
Software Process

Prof. Ing. Ivo Vondrak, CSc.
Dept. of Computer Science

Technical University of Ostrava
ivo.vondrak@vsb.cz

http://vondrak.cs.vsb.cz

mailto:ivo.vondrak@vsb.cz
http://vondrak.cs.vsb.cz/

References
1. Kruchten, P.: The Rational Unified Process: An Introduction, Third

Edition, Addison-Wesley Pearson Education, Inc., NJ, 2004
2. Humphrey, W. Managing the Software Process, Addison-Wesley/SEI

series in Software Engineering, Reading, Ma, 1989
3. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software

Development Process, Addison Wesley Longman, Inc., 1999
4. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language

User Guide, Addison Wesley Longman, Inc., 1999
5. IBM Corporation, Rational University: PRJ270: Essentials of Rational

Unified Process, USA, 2003

Contents
• Introduction

• Layout of Software Development, Definition of the Process,
Capability Maturity Model

• Software Process
• Software Development Best Practices, Rational Unified

Process, Process Description, Iterative Development,
Architecture-Centric Development, Use-Case-Driven
Development

• Process Disciplines
• Business Modeling, Requirements, Analysis and Design,

Implementation, Testing, Deployment, Project Management,
Configuration and Change Management, Environment

• Conclusions

Introduction
Layout of Software Development

Definition of the Process
Capability Maturity Model

Software Production Layout

instantiated by
Project

Project

Project

Project Management
• Planning
• Control

Project Execution
• Analysis
• Design
• Implementation
• Test

consists of consists of

Project
Management
Methodology Software

Development
Methodology

uses
uses

System of
methods for
project
management

System of
methods for
software product
development

Software Process

is a is a

A Definition of Process

Relationships
of all tasks

Tools Skills,
Training,
Motivation, &
Management

PROCESS

The means by which people, procedures, methods, equipment,
and tools are integrated to produce a desired end result.

A
B

C
D

Source: Software Engineering Institute, Carnegie Mellon University

Software Process
W. Humphrey and P. Feiler: A process is a set of partially
ordered steps intended to reach a goal..."(to produce and
maintain requested software deliverables). A software
process includes sets of related artifacts, human and
computerized resources, organizational structures and
constraints.

PEOPLE

PROCESS TECHNOLOGY
Major determinants of software cost,
schedule, and quality performance

Capability Maturity Model (CMM)

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Basic management control

Integrated end-to-end process

Measurement

Feedback

Process
discipline

Process
definition

Process
control

Process
improvement

Visibility into Software Process

In Out

In Out

In Out

In Out

In Out

1

2

3

4

5

Software Process
Software Development Best Practices

Rational Unified Process
Process Description

Iterative Development
Architecture-Centric Development

Use-Case-Driven Development

What’s Up?!
G. Booch: The bad news is that the expansion of the software
systems in size, complexity, distribution, and importance
pushes the limits of what we in the software industry know
how to develop. Trying to advance legacy systems to more
modern technology brings its own set of technical and
organizational problems. Compounding the problem is that
businesses continue to demand increased productivity and
improved quality with faster development and demployment.
Additionally, the supply of qualified development personnel is
not keeping pace with demand. The net result is that building
and maintaining software is hard and getting harder; building
quality software in a repeatable and predictable is harder still.

Symptoms of Software
Development Problems
• Inaccurate understanding of end-user needs
• Inability to deal with changing requirements
• Modules don’t integrate
• It is difficult to maintain or extend the software
• Late discovery of flaws
• Poor quality and performance of the software
• No coordinated team effort
• Build-and-release issues

Unfortunately, treating these symptoms
does not treat the disease!

Root Causes
• Insufficient requirements specification and their ad hoc management
• Ambiguous and imprecise communication
• Brittle architecture
• Overwhelming complexity
• Undetected inconsistencies in requirements, design, and implementation
• Poor and insufficient testing
• Subjective assessment of project status
• Failure to attack risk
• Uncontrolled change propagation
• Insufficient automation

To treat these root causes eliminates the symptoms and
enables to develop and maintain software in a repeatable
and predictable way.

Software Best Practices

• Develop software iteratively
• Manage requirements
• Use component-based architectures
• Visually model software
• Verify software quality
• Control changes to software

Commercially proven approaches to software development
that, when used in combination, strike at the root causes of
software development problems.*

* See the Software Program Manager’s Network best practices work at http://www.spmn.com

Tracing Symptoms to Root
Causes and Best Practices

• Inaccurate understanding
of end-user needs

• Inability to deal with
changing requirements

• Modules don’t integrate
• It is difficult to maintain or

extend the software
• Late discovery of flaws
• Poor quality and

performance of the
software

• No coordinated team effort
• Build-and-release issues

• Insufficient requirements
specification and their ad hoc
management

• Ambiguous and imprecise
communication

• Brittle architecture
• Overwhelming complexity
• Undetected inconsistencies in

requirements, design, and
implementation

• Poor and insufficient testing
• Subjective assessment of

project status
• Failure to attack risk
• Uncontrolled change

propagation
• Insufficient automation

• Develop software
iteratively

• Manage
requirements

• Use component-
based architectures

• Visually model
software

• Verify software
quality

• Control changes to
software

Develop Software Iteratively

Requirements
analysis

Software
Design

Implementation
(coding)

Testing and
deployment

Classic software development processes follow the waterfall
lifecycle. Development proceeds linearly from requirements
analysis, through design, implementation, and testing.

• It takes too long to see results.
• It depends on stable, correct

requirements.
• It delays the detection of errors

until the end.
• It does not promote software

reuse and prototyping.

Iterative and Incremental Process
This approach is one of continuous discovery, invention, and
implementation, with each iteration forcing the development team
to drive the desired product to closure in a predictable and
repeatable way.

An iteration is a complete
development loop resulting in a
release (internal or external) of
an executable product, a subset
of the final product under
development, which grows
incrementally from iteration to
iteration to become the final
system.

Solutions to Root Causes
• Serious misunderstandings are made visible early
• This approach enables user feedback
• The development team is forced to focus on most critical issues
• Continuous testing enables an objective assessment of the project status
• Inconsistencies among requirements, design, and implementation are

detected early
• The workload of the team is spread more evenly during project lifecycle
• The team can leverage lessons learned and improve the process
• Stakeholders can be given concrete evidence of the project status

Manage Requirements

• It is a real problem to capture all requirements before the start
of development. Requirements change during project
lifecycle. Understanding and identifying of requirements is a
continuous process.

• The active management of requirements is about following
three activities: eliciting, organizing, and documenting the
system required functionality and constraints.

A requirement is a condition or capability a system must
have.

Solutions to Root Causes
• A disciplined approach is built into requirements management
• Communication is based on defined requirements
• Requirements have to be prioritized, filtered, and traced
• An objective assessment of functionality is possible
• Inconsistencies are detected more easily
• With a tool support it is possible to provide a repository for

system requirements

Use Component-Based
Architectures
• Component-based development is an important approach

how to build resilient software architecture because it enables
the reuse of components from many available sources.
Components make reuse possible on a larger scale, enabling
systems to be composed from existing parts, off-the-shelf
third-party parts, and a few new parts that address the
specific domain and integrate the other parts together.

• Iterative approach involves the continuous evolution of the
system architecture. Each iteration produces an executable
architecture that can be measured, tested, and evaluated
against the system requirements.

Solutions to Root Causes
• Components facilitate resilient architectures
• Modularity enables a clear separation of system elements that

are subject to change
• Reuse is facilitated by leveraging standardized frameworks

(COM, CORBA, EJB …) and commercially available
components

• Components provide a natural basis for configuration
management

• Visual modeling tools provide automation for component-
based development

Visually Model Software
A model is a simplification of reality that completely
describes a system from a particular perspective.

Dynamic
Diagrams

Static
Diagrams

Activity
Diagrams

Models

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Deployment
Diagrams

Component
Diagrams

Object
Diagrams

Class
DiagramsUse-Case

Diagrams

Visual modeling with UML

Visual Modeling Using UML

Activity
Diagrams

Models

Sequence
Diagrams

Collaboration
Diagrams

Statechart
Diagrams

Deployment
Diagrams

Component
Diagrams

Object
Diagrams

Class
DiagramsUse-Case

Diagrams

UML
Diagrams

Target
System

Forward and Reverse
Engineering

Solutions to Root Causes
• Use cases and scenarios unambiguously specify behavior
• Software design is unambiguously captured by models
• Details can be hidden when needed
• Unambiguous design discovers inconsistencies more readily
• Application quality begins with good design
• Visual modeling tools provide support for UML modeling

Continuously Verify Software
Quality
• Software problems are exponentially more expensive to find

and repair after deployment than beforehand.
• Verifying system functionality involves creating test for each

key scenario that represents some aspect of required
behavior.

• Since the system is developed iteratively every iteration
includes testing = continuous assessment of product quality.

Cost

Time

Testing Dimensions of Quality
Functionality

Usability

ReliabilityPerformance

Supportability

Test application from the
perspective of convenience
to end-user.

Test the accurate workings of
each usage scenario

Test that the application behaves
consistently and predictably.

Test online response under
average and peak loading

Test the ability to maintain and
support application under
production use

Solutions to Root Causes
• Project status assessment is made objective because test

results are continuously evaluated
• This objective assessment exposes inconsistencies in

requirements, design and implementation
• Testing and verification is focused on most important areas
• Defects are identified early and thus the costs of fixing them

are reduced
• Automated testing tools provide testing for functionality,

reliability, and performance

Control Changes to Software
• The ability to manage change - making certain that each

change is acceptable, and being able to track changes - is
essential in an environment in which change is inevitable.

• Maintaining traceability among elements of each release is
essential for assessing and actively managing the impact of
change.

• In the absence of disciplined control of changes, the
development process degenerates rapidly into chaos.

Solutions to Root Causes
• The workflow of requirements changes is defined and

repeatable
• Change requests facilitate clear communication
• Isolated workspaces reduce interferences among team

members working in parallel
• Workspaces contain all artifacts, which facilitates consistency
• Change propagation is controlled
• Changes can be maintained in a robust system

The Rational Unified Process

• RUP is a process product. It is developed and maintained by Rational
Software and integrated with its suite of software development tools
available from IBM.

• RUP is a process framework that can be adapted and extended to suit the
needs of an adopting organization.

• RUP captures many of best practices mentioned before (develop software
iteratively, manage requirements, use component-based architectures,
visually model software, continuously verify software quality, control
changes to software).

The Rational Unified Process® (RUP) is a Software Engineering Process. It provides
a disciplined approach to assigning tasks and responsibilities within a development
organization. Its goal is to ensure the production of high-quality software that meets
the needs of its end-users, within a predictable schedule and budget.

Two Dimensions of the Process

Dynamic aspect of
the process as it is
enacted: it is
expressed in terms
of cycles, phases,
iterations, and
milestones –
organization along
time

Static aspect of the
process: how it is
described in terms of
activities, artifacts,
workers and workflows –
organization along
content

Process Description
• Static structure of the process describes who is doing what,

how, and when. The RUP is represented using following
primary elements:

• Roles: the who
• Activities: the how
• Artifact: the what
• Workflow: the when

• A discipline is the collection of above mentioned kinds of
elements.

Roles

• The behavior is expressed in terms of activities the role
performs, and each role is associated with a set of cohesive
activities.

• The responsibilities of each role are usually expressed in
relation to certain artifact that the role creates, modifies, or
control.

• Roles are not individuals, nor job titles. One can play several
roles in process.

Role defines the behavior and responsibilities of an
individual (designer, analyst, programmer ...), or a group of
individuals working together as a team.

Activities

• The granularity of an activity may vary from hours to days. It
usually involves one person in the associated role and affects
one or only small number of artifacts.

• Activities may be repeated several times on the same artifact,
especially from one iteration to another.

An activity is a unit of work that an individual in that role may
be asked to perform and that produces a meaningful result in
the context of the project.

Artifacts

• Deliverables are only the subset of other artifacts.
• Artifacts are very likely to be subject to version control and configuration

management.
• Sets of Artifacts:

• Management set – planning and operational artifacts
• Requirements set – the vision document and requirements in the form of

stakeholders’ needs
• Design set – the design model and architecture description
• Implementation set – the source code and executables, the associated

data files
• Deployment set – installation instructions, user documentation, and

training material

Artifacts are things that are produced, modified, or used by a process (model,
document, source code, executables …).

Major Artifacts

Stakeholder
Requests Vision Business

Case
Risk
List

Software
Development
Plan

Software
Architecture
Document

Glossary

Software
Requirements
Specification

Test
Plan

Deployment
PlanUse-Case

Model

Analysis
Model

Design
Model

Implementation
Model

Product

Supplementary
Specification

Resources, Roles and Activities

Designer
Architectural
Board Programmer

Richard John Mary Laura

Roles

Resources

Object
design

Architectural
analysis

Architectural
design Coding

Activities

Workflows

• Core Workflow gives the overall flow of activities for each
discipline.

• Workflow Details show roles, activities they perform, input
artifacts they need, and output artifacts they produce.

• Iteration Plan is time-sequenced set of activities and tasks,
with assigned resources, and containing task dependencies. A
fine-grained plan, one per iteration.

Workflows are sequences of activities that produce results of
observable value (business modeling, implementation …).

Example of a Core Workflow

Analyze the
Problem

Understand
Stakeholder Needs

Manage Changing
Requirements

Refine the
System Definition

Manage the Scope
of the System

Define the System

[New system] [Existing System]

[Incorrect
Problem] [Addressing Correct Problem]

[Can’t Do All
the Work]

[Work in Scope]

[New Input]

Workflow
Detail

Iterative Development
• Given today’s sophisticated software systems, it is not

possible to sequentially first define the entire problem, design
the entire solution, build the software and then test the
product at the end.

• An iterative approach is required that allows an increasing
understanding of the problem through successive
refinements, and to incrementally grow an effective solution
over multiple iterations.

• Each iteration ends with an executable release.

The Sequential Process
• Many engineering problems are solved using a sequential process:

• Understand the problem, its requirements and constraints
• Design a solution that satisfies all requirements
• Implement the solution using the best engineering techniques
• Verify that the implementation satisfies the started requirements
• Deliver: Problem solved!

• This works perfectly in the area of civil and mechanical engineering where
design and construction is based on hundreds of years of experience.

• The sequential process is based on two wrong assumptions that
jeopardize the success of software projects:

• Requirements will be frozen (user changes, problem changes,
underlying technology changes, market changes …)

• We can get the design right on paper before proceeding (underlying
“theories” are week and poorly understood in software engineering,
relatively straightforward laws of physics underlie the design of bridge,
but there is no strict equivalent in software design – software is “soft”)

Iterative Lifecycle
Requirements

Design
Implementation

TestingR

D

I

T

R

D

I

T

R

D

I

T

R

D

I

T
Time

Phases and Milestones
The development cycle is divided in four consecutive phases:
• Inception: a good idea is developed into a vision of the end

product and the business case for the product is presented.
• Elaboration: most of the product requirements are specified

and the system architecture is designed.
• Construction: the product is built – completed software is

added to the skeleton (architecture)
• Transition: the product is moved to user community (beta

testing, training …)

Inception Elaboration Construction Transition

Time Lifecycle
Objective
Milestone

Lifecycle
Architecture
Milestone

Initial Operation
Capability
Milestone

Product
Release
Milestone

Development Cycle

• Initial development cycle – a software product is created
• Evolution cycles – a product evolves into its next generation

by repetition of the sequences of inception, elaboration,
construction, and transition phases.

• Cycles may overlap slightly: the inception and elaboration
phase may begin during the final part of the transition phase
of the previous cycle.

Each cycle results in a new release of the system, and each
is a product ready for delivery. This product has to
accommodate the specified needs.

I
10%

E
30%

C
50%

T
10%

Typical time line for initial development cycles

Phases and Iterations
Each phase can be further broken down into iterations. An iteration is a complete
development loop resulting in a release (internal or external) of an executable
product, a subset of the final product under development, which grows
incrementally from iteration to iteration to become the final system.

Inception Elaboration Construction Transition

Time

LCO LCA IOC PR

Preliminary
Iteration

Architecture
Iteration

Architecture
Iteration

Developm.
Iteration

Developm.
Iteration

Developm.
Iteration

Transit.
Iteration

Transit.
Iteration

Internal
Release

Minor
Milestone

First External Release
(e.g. beta)

Final Release

Scope and
Business
Case agreement

Architecture
baselined

Product sufficiently
mature for customers to
use

Acceptance
or end of life

Duration of an Iteration
• An iteration starts with planning and requirements and

finishes with an internal or external release.
• Ideal duration of an iteration is from two to six weeks,

depending on your project size and complexity.
• Factors that affect duration of an iteration:

• Size, stability and maturity of organization
• Familiarity with the iterative process
• Size of project
• Technical simplicity of project
• Level of automation used to manage code, distribute

information, perform testing

Number of Iterations
Phase Low Medium High

Inception 0 1 1

Elaboration 1 2 3

Construction 1 2 3

Transition 1 1 2

Total 3 6 9

“Normal” project has 6 ± 3 iteration.

Conditions that Increase Number
of Iterations

• Inception - working with new functionality, unknown business
environment, highly volatile scope, make-buy decisions …

• Elaboration - working with new system environment (new
architectural features), untested architectural elements, need
for system prototypes …

• Construction - lots of code to write and verify, new
technology or development tools …

• Transition - need for alphas and betas, conversions of
customer database, incremental delivery to customers
…

Inception Phase: Objectives
• Establish project scope and boundary conditions, including

operational concepts, and acceptance criteria
• Determine the critical use cases and primary scenarios of

behavior that drive the system functionality
• Demonstrate at least one candidate architecture against some

of the primary scenarios
• Estimate the overall cost and schedule for the entire project
• Identify potential risks (the sources of unpredictability)
• Prepare the supporting environment for the project

Milestone: Lifecycle Objective (LCO)
• Stakeholder concurrence on scope definition and cost and

schedule estimates
• Agreement that the right set of requirements has been

captured and that there is a shared understanding of these
requirements

• Credibility of the cost and schedule estimates, priorities, risks,
and development process

• All risks have been identified and a mitigation strategy exists
for each

• Actual expenditures versus planned expenditures

Elaboration Phase: Objectives
• Define, validate and baseline the architecture as rapidly as is

practical
• Baseline the vision
• Baseline a high-fidelity plan for the construction phase
• Refine support environment
• Demonstrate that the baseline architecture will support the

vision at a reasonable cost in a reasonable time

A baseline is a reviewed and approved release of artifacts
that constitutes and agreed-on basis for further evolution or
development and that can be changed only through a formal
procedure.

Milestone: Lifecycle Architecture (LCA)
• Product vision and requirements are stable.
• Architecture is stable.
• The executable demonstration show that the major risks have

been addressed and resolved.
• Iteration plans for Construction phase is sufficiently detailed to

allow work to proceed, and are supported by credible estimates.
• All stakeholders agree that current vision can be achieved if the

current plan is executed to develop the complete system, in the
context of the current architecture.

• Actual resource expenditures versus planned expenditures are
acceptable.

Construction Phase: Objectives
• Complete the software product for transition to user
• Minimize development costs by optimizing resources and

avoiding unnecessary scrap and rework
• Achieve adequate quality as rapidly as is practical
• Achieve useful versions (alpha, beta, and other test releases)

as rapidly as possible

Milestone: Initial Operational
Capability (IOC)
• The product release is stable and mature enough to be

deployed in the user community.
• All the stakeholders are ready for the product’s transition into

the user community.
• The actual resource expenditures versus planned are still

acceptable.

Transition Phase: Objectives
• Achieve user self-supportability
• Achieve stakeholder concurrence that deployment baselines

are complete and consistent with the evaluation criteria of the
vision

• Achieve final product baseline as rapidly and cost-effectively
as practical

Milestone: Product Release (PR)
• The user is satisfied.
• Actual resources expenditures versus planned expenditures

are acceptable.

Benefits of an Iterative Approach
• Risk Mitigation – an iterative process lets developers mitigate risks

earlier than a sequential process where the final integration is the only
time that risks are discovered or addressed.

• Accommodating Changes – an iterative process lets developers take
into account requirements, tactical and technological changes
continuously.

• Learning as You Go – an advantage of the iterative process is that
developers can learn along the way, and the various competencies and
specialties are employed during the entire lifecycle.

• Increased Opportunity for Reuse – an iterative process facilitates reuse
of project elements because it is easy to identify common parts as they
are partially design and implemented instead of identifying all commonality
in the beginning.

• Better Overall Quality – the system has been tested several times,
improving the quality of testing. The requirements have been refined and
are related more closely to the user real needs. At the time of delivery, the
system has been running longer.

Architecture-Centric Development
• A large part of RUP focuses on modeling. Models help

developers understand and shape both the problem and the
solution.

• Model is a simplification of reality that help us master a large,
complex system that cannot be comprehended easily in its
entirety. The model is not the reality, but the best models are
the ones that stick very close to reality.

• Multiple models are needed to address different aspects of
the reality. These models must be coordinated to ensure that
they are consistent and not too reduntant.

Architecture
• Models are complete, consistent representation of the system

to be built. These models of complex system can be very
large!

• Architecture is the skeleton: “Architecture is what remains
when you cannot take away any more things and still
understand the system and explain how it works.”

• Definition: Architecture is the fundamental organization of a
system, embodied in its components, their relationships to
each other and the environment, and the principles governing
its design and evolution.*

* ANSI/IEEE Std 1471-2000, Recommended Practice for Architectural Description of Software-Intensive Systems

Definition of Architecture (RUP)

• Architecture is part of design; it is about making decisions about how system will be
built. But it is not all of design. It stops at the major elements – the elements that
have a pervasive and long-lasting effect on the qualities of the system.

• Architecture is about structure and organization but it also deals with behavior.
• Architecture does not look only inward but it also looks at the fit of the system in two

contexts: the operational and development. It encompasses not only technical
aspects but also its economic and sociological aspects.

• Architecture also addresses “soft” issues such as style and aesthetics.

An architecture is the set of significant decisions about the organization of a software
system, the selection of the structural elements and their interfaces by which the system is
composed, together with their behavior as specified in the collaborations among those
elements, the composition of these structural and behavioral elements into progressively
larger subsystems, and the architectural style that guides this organization, these elements
and their interfaces, their collaborations, and their composition

Architecture Representation
• The representation of architecture should allow various

stakeholders to communicate and discuss the architecture.
• The various stakeholders have different concerns and are

interested in different aspects of architecture.
• Architectural view – simplified description (an abstraction) of

a system from particular perspectives (e.g.):
• Logical organization of the system
• Functionality of the system
• Concurrency aspects
• Physical distribution of the software on the underlying platform

4+1 View Model of Architecture

Logical View
An abstraction of the
design model that identifies
major design packages,
subsystems and classes

Implementation
View
An organization of static
software modules (source
code, data files, components,
executables, and others …)

Process View
A description of the concurrent
aspects of the system at
runtime - tasks, threads, or
processes as well as
 their interactions

Deployment View
Various executables and
other runtime components
are mapped to the underlying
platforms or computing
nodes

Use-Case View
Key use-case and
scenarios

Models and Architectural Views
• Models provide complete representation of the system, whereas an

architectural view focuses only what is architecturally significant - an
architectural view is an abstraction of a model.

• Architecturally significant elements include following:
• Major classes that model major business entities
• Architectural mechanisms that enable persistency and communication
• Patterns and frameworks
• Layers and subsystems
• Interfaces
• Major processes, or threads of control

Logical View Implementation
View

Process View Deployment
View

Use-Case ViewDesign model

Use-case model

Implementation
model

Deployment model

Primary Architectural Artifacts
• Software Architecture Document (SAD) represents

comprehensive overview of the architecture of the software
system. It includes the following:

• Architectural Views
• Requirements and constraints	
• Size and performance characteristics
• Quality, extensibility, and portability targets

• The architectural prototype, which is used to validate the
architecture (tested via architecturally significant use cases)
and which serves as the baseline for the rest of development.

Component-Based Development
• A component is a nontrivial, relatively independent, and

replaceable part of a system that fulfills a clear function in the
context of a well-defined architecture. A component conforms
to and provides the realization of a set of interfaces.

• Kinds of components:

Application-specific

Business-specific

Middleware

System software

Use-Case-Driven Development
• A use case is a sequence of actions a system performs that

yields a result of observable value to a particular actor.
• An actor is someone or something outside the system that

interacts with the system.

Customer

Withdraw Money

Bank System
Check Balance

Use Case
• A system functionality is defined by a set of use cases, each

of which represents a specific sequence of actions (flow of
events).

• The use-case flow of events expresses the behavior of the
system in a black box view of the system, whereas a use-
case realization is the white box view that shows how the use
case is actually performed in terms of interaction objects.

• A use case is initiated by an actor to invoke a certain
functionality in the system.

• All use cases constitute all possible ways of using the system.

Scenarios
• A scenario is an unique sequence of actions (thread) through

a use case – one path through use case.
• A scenario is an instance of the use case – using object

technology: use case is a class, whereas scenario is the
instance of this class.

• Obviously, each use case can have many instances
(scenarios)

• ATM example: one scenario exhibits correct money
withdrawal, another scenario show how the process of money
withdrawal is canceled because of insufficient balance etc.

Actor
• Actors are not part of the system. They represent roles a user

of the system can play.
• An actor can actively interchange information with the system:

• An actor can be a passive recipient of information.
• An actor can be a provider of information.

• An actor can represent a human, a machine or another
system.

Use-Case Model
• Use-case model consists of the set of all uses cases together

with the set of actors that interact with these use cases. It
provides a model of the system intended functions, and can
serve as a contract between the customer and the
developers.

• Use-case model is represented by UML use-case diagrams
and activity diagrams to visualize use cases.

Disciplines Produce and Share
Models

Business
Modeling Requirements

Analysis &
Design Implementation Test

Business
Use-Case Model

Business
Domain Model

Business
Process Model

Use-Case
Model

Use-Case
Model

Design
Model

Design
Model

Design
Model

Implementation
Model

Implementation
Model

Test Suite

Use cases defined for a system
are the basis for the entire
development process.

Use Cases in the Process
• The use-case model is a result of the requirements discipline.

It captures what the system should do from user point of view.
• In analysis and design use cases serve as the basis for use

case realizations that describe how the use case is performed
in terms of interacting objects in design model. All the
required behavior is represented in the system design.

• Because use cases are the basis for the design model and
the design model is the implementation specification, they are
implemented in terms of design classes.

• During testing, use cases define the basis for identifying test
cases and procedures.

Process Disciplines
Business Modeling

Requirements
Analysis and Design

Implementation
Testing

Deployment
Project Management

Configuration and Change Management
Environment

Disciplines and Artifacts Evolution

B R A I T D P C E

B R A I T D P C E

B R A I T D P C E B R A I T D P C E

Inception

Elaboration

Construction Transition

Time

Business Modeling

The goals are the following:
• To understand problems in target organization and identify potential

improvements
• To ensure customer and end user have common understanding of target

organization
• To derive system requirements to support target organization
• To understand structure and dynamics of organization in which system is

to be deployed

The main goal of the business process modeling is to provide common language
for communities of software and business engineers.

Business Modeling and Software
Development
Business Modeling acts as:
• Input to Requirements

• Business Use-Case Model and Business Process Model help
to understand the requirements of the system and identify
system use cases.

• Input to Analysis & Design
• Business entities from the Business Domain Model help to

identify entity classes in the Analysis Model.

WorkflowAssess Business
Status

[Early Inception]

Identify Business
Processes

Refine Business
Process Definitions

Design Business
Process Realizations

Refine Roles and
Responsibilities

Describe Current
Business

Develop Domain
Model

Explore Process
Automation

[Business
Modeling]

[Domain
Modeling
Only]

Workflow Details
• Assess Business Status – the common business vocabulary is captured and

target organization is assessed.
• Describe Current Business – the business model of the current business

processes is built in case that reengineering or improving of those processes is
needed.

• Identify Business Processes – key business goals are identified as well as
business processes. Business architecture is defined.

• Refine Business Process Definitions – the business use cases are represented
in form of structured business use-case models.

• Design Business Process Realizations – complete business model is built.
Business workers and entities are identified in class diagrams. Realizations of
business processes are described and specified (e.g. in form of activity diagrams).

• Refine Roles and Responsibilities – business workers and entities are detailed
and business model is reviewed.

• Explore Process Automation – the way how the business processes can be
automated is discovered and described.

• Develop Domain Model – in case that there is no need of full-scale business
model only domain model is built.

Roles
• Business-Process Analyst leads and coordinates business

modeling by outlining the organization being modeled.
Business-Process Analyst establishes the business vision, he/
she identifies business actors and use case and their
interaction.

• Business Designer details the specification of business use
cases. Business Designer completes the business model that
specifies all business processes, workers, and entities.

• Stakeholders provide all necessary input information and
reviews.

• Business Reviewer reviews the resulting artifacts.

Key Artifacts
• Business Vision Document defines the objectives and

business goals of the business modeling effort.
• Business Use-Case Model specifies business functions –

business processes. Sometimes this model is called as a
process map.

• Business Domain Model is the object model that describes
business workers and entities and their relationships.

• Business Process Model shows the realization of the
business use-cases. It shows how the business processes
are executed.

Requirements

The goals of the requirements discipline are following:
• To establish and maintain agreement with the customers and other

stakeholders on what the system should do and why
• To provide system developers with a better understanding of the system

requirements
• To define the boundaries of the system
• To provide a basis for planning the technical contents of iterations
• To provide a basis for estimating cost and time to develop the system
• To define a user-interface for the system, focusing on the needs of the users

The main goal of the requirements discipline is to describe what the system
should do by specifying its functionality. Requirements modeling allows the
developers and the customer to agree on that description.

Types of Requirements
• Functional Requirements (behavioral) are used to express the behavior

of a system by specifying both the input and output conditions that are
expected to result.

• Supplementary Requirements (nonfunctional) exhibits quality attributes:
• Usability addresses human factors like aesthetic, easy learning, easy

of use, and so on
• Reliability addresses frequency and severity of failure, recoverability,

and accuracy.
• Performance deals with quantities like transaction rate, speed,

response time, and so on.
• Supportability addresses how difficult is to maintain the system and

other qualities required to keep the system up-to-date after its release.

Workflow
Analyze the
Problem

[New System]

Understand
Stakeholder
Needs

Manage Changing
Requirements

Define the
System

Manage the Scope
of the System

Refine the
System Definition

[Existing System]
[New Input]

[Incorrect
Problem]

[Addressing
Correct
Problem]

[Work in
Scope]

[Can’t Do
All the Work]

Workflow Details
• Analyze the Problem – the agreement on a statement of the addressed

problem is captured. Stakeholders, boundaries and constraints of the
system are identified.

• Understand Stakeholder Needs – stakeholders requests and clear
understanding of the user needs are gathered.

• Define the System – the system features required by stakeholders are
established. Actors and use cases of the system are identified for each key
features.

• Manage the Scope of the System – the vision is developed, functional and
nonfunctional requirements are collected, the use cases are prioritized so
the system can be delivered on expected time and budget.

• Refine the System Definition – use cases are detailed as well as the
software requirements.

• Manage Changing Requirements – the central control authority is
employed to control change to the requirements, the agreement with the
customer is maintained.

Roles
• System Analyst leads and coordinates requirement elicitation

and use-case modeling by outlining the system functionality.
• Requirements Specifier details all or parts of the system

functionality. The goal is to coordinate requirements with other
specifiers. System Analyst and Requirement Specifier work
closely with the User Interface Designer.

• Software Architect ensures the integrity of the architecturally
significant use cases.

• Requirement Reviewer verifies that the requirements are
perceived and interpreted correctly by the development team.

Key Artifacts
• Stakeholder Requests are elicited and gathered to get a “wish list”.
• Vision Document contains key needs and features of the system. It

supports the contract between the funding authority and the development
organization.

• Use-Cases Model is built to serve as a contract among customers, users
and system developers on the system functionality.

• Supplementary Specification is a complement to Use-Case Model,
because together they capture all software functional and nonfunctional
requirements – complete Software Requirements Specification.

• Glossary defines a common terminology that is used across the project.
• Storyboards associated with use cases serve as the basis for user

interface prototypes.

Analysis & Design

The purpose of analysis and design is as follows:
• To translate the requirements into a specification that

describes how to implement the system
• To establish robust architecture so that you can design a

system that is easy to understand, build, and evolve

The main goal of the analysis & design discipline is to show
how the system will be realized in the implementation phase.

Analysis versus Design
• Analysis focuses on ensuring that the system functional

requirements are handled. It ignores many of nonfunctional
requirements of the system and also abstracts from the
implementation environment.

• Design further refines the analysis model in light of the actual
implementation environment, performance requirements, and
so on. It focuses on optimizing the system design while
ensuring complete requirements coverage - the complete
behavior of a use cases are allocated to collaborating
classes.

Workflow
Define a Candidate
Architecture

[Early Elaboration
Iteration]

Perform Architectural
Synthesis

Refine the
Architecture

Analyze Behavior

Design
Components

Design the
Database

[Inception Iteration
(Optional)]

[Optional]

Workflow Details
• Define a Candidate Architecture – initial sketch of the architecture of the

system is defined.
• Perform Architectural Synthesis – architectural proof-of-concept is

constructed and its validity is assessed.
• Refine the Architecture – new design elements identified for the current

iteration are integrated with preexisting elements. The consistency and
integrity of the architecture is maintained.

• Analyze Behavior – behavioral descriptions specified by the use cases are
transformed into the set of elements on which the design can be based.
User interfaces are designed and prototyped.

• Design Components – classes, interfaces and their relationship as well as
their organization into packages and subsystem are specified.

• Design the Database – the persistent classes are identified and
appropriate database structure to store them is designed. The mechanism
for storing and retrieving persistent data is specified. This workflow detail is
optional.

Roles
• Software Architect leads and coordinates technical activities

and artifacts. Software Architect establishes the overall
structure for each architectural view including the
decomposition of the view, the grouping of elements, and the
interfaces between the major grouping.

• Designer defines the responsibilities, operations, attributes,
and relationships of classes.

• Database Designer deals with all issues related to database
design.

• Architecture and Design Reviewer reviews the key artifacts
produced through this workflow.

Key Artifacts
• Software Architecture Document captures various architectural views of

the system.
• Analysis Model provides a rough sketch of the system. It is the

abstraction, or the generalization of the design where the implementation
dimension is omitted.

• Design Model consists of a set of collaborating elements that provide the
behavior of the system. This behavior is derived primarily from the use-
case model. It consists of classes, which are aggregated into packages
(logical grouping of classes) and subsystems (package that act as a single
unit to provide specific behavior).

• User Interface Design and Prototype deals with the visual shaping of
the user interface so that it handles various requirements.

Implementation

The implementation discipline has following four purposes:
• To implement classes and objects in terms of components

and source code
• To define the organization of the components in terms of

implementation subsystems
• To test the developed components as units
• To integrate produced units to create an executable system

The goal of the implementation workflow is to flesh out the
designed architecture and the system as a whole.

Builds, Integration, and Prototypes
• Build is an operational version of a system or part of a system that demonstrates a

subset of the capabilities to be provided in the final product.
• Integration refers to a software development activity in which separate software

components are combined into a whole.
• Prototypes help to build support for the product be showing something concrete

and executables to the users, customers, and managers. In many cases
prototypes may evolve to the real product. There are the following types of
prototype:

• Behavioral Prototypes show what the system will do as seen by the users (the
“skin”).

• Structural Prototypes show the infrastructure of the ultimate system (the
“bones”).

• Exploratory Prototypes are designed to test a key assumptions that involves
functionality or technology or both. Behavioral prototypes tend to be exploratory
prototypes.

• Evolutionary Prototypes evolve from one iteration to the next. Their code
tends to be reworked as the product evolves. Structural prototypes tend to be
evolutionary prototypes.

Workflow Structure the
Implementation Model

[More Components
to Implement
for this Iteration]

Plan the
Integration

Implement
Components

Integrate Each
Subsystem

Integrate the
System

[Done] [More
Subsystem
Integration
for this Iteration]

[Done]

[Components
Implemented
and Validated]

[More System
Builds for this
Iteration] [Done]

[Subsystems
Implemented
and Validated]

Workflow Details
• Structure the Implementation Model – the goal is to ensure

that the implementation model is properly structured to make
development of components conflict-free as possible.

• Plan the Integration - which subsystem is going to be
implemented, and the order in which the subsystems should be
integrated is planned.

• Implement Components – components are implemented,
analyzed and tested. The plan for their integration into
subsystems is prepared.

• Integrate Each Subsystem – the subsystems are integrated,
developer tests implemented and executed.

• Integrate the System – the whole system is integrated.

Roles
• Implementer develops the components and all related

artifacts and performs unit testing.
• Integrator constructs a build.
• Software Architect defines the structure of the

implementation model including layering and subsystems.
• Code Reviewer inspects the code for required quality and

conformance to the project standards.

Key Artifacts
• Implementation Elements – pieces of the software code like

source, binary a executable components as well as various
data files (configuration, readme etc.).

• Implementation Subsystem – a collection of implementation
elements and other implementation subsystems.

• Integration Build Plan – a document that defines the order in
which the elements and subsystems are built.

Testing

Testing employs the following core practices
• Find and document defects in the software product
• Advise management about perceived software quality
• Prove the validity of the assumptions made in design and

requirement specifications through concrete demonstration
• Validate the software product functions as designed
• Validate that the requirements are implemented appropriately

The goal of testing is to evaluate product quality and to find
and expose the weakness in the software product.

Quality Dimension of Testing
The following aspects are generally assessed
• Reliability – the software should perform predictably and

consistently (no crashing, hanging, memory leaks …)
• Functionality – the software should execute required use

cases or desired behavior as intended
• Performance – the software should execute and response in

a timely manner
• Usability – the software is suitable for use by its end users.

Levels of Testing
• Unit Testing – the smallest testable elements of the system

are tested, typically at the same time that those elements are
implemented

• Integration Testing – the integrated units, components or
subsystems are tested

• System Testing – the complete application or system (one or
more applications) are tested

• Acceptance Testing – the complete system is tested by end
users to determine readiness for deployment

Regression Testing

Purposes of regression testing are following
• The defects identified in the previous execution of test have

been addressed
• The changes made to the code have not caused new or

already appeared defects

Regression testing is a test strategy in which previously
executed tests are reexecuted against a new version of the
target-of-test to ensure that the quality of the target has not
moved back (regressed) when new capabilities have been
added.

Workflow Define Evaluation
Mission

[Another Technique] Verify Test
Approach

Validate Build
Stability

Test and
Evaluate

Achieve Acceptable
Mission

Improve Test Assets

[Another Test Cycle]

Workflow Details
• Define Evaluation Mission – the purpose is to identify appropriate focus of

the test effort for the given iteration and to gain agreement with stakeholders
on the corresponding goals.

• Verify Test Approach – various techniques that will facilitate the planned
tests are verified.

• Validate Build Stability – the build is tested from point of view of its stability
required for the execution of detailed tests.

• Test and Evaluate – the process of implementation, execution, and
evaluation of specific tests is realized. The corresponding reports of
encountered problems are issued.

• Achieve Acceptable Mission – the useful evaluation results are delivered
to stakeholders. These results are assessed in terms of evaluation mission
set up at the beginning.

• Improve Test Assets - various test assets like test ideas list, test cases,
test data, test scripts etc. are maintained and improved.

Roles
• Test Manager is responsible for the testing process. He/She

deals with efforts like resource planning and management,
resolution of issues and so on.

• Test Analyst identifies and defines the required tests,
monitors testing progress and results.

• Test Designer is responsible for defining the test approach
and ensuring its implementation.

• Tester executes the system tests. This effort includes
activities like setting up and execution of tests, assessment
the results, and logging change requests.

Key Artifacts
• Test Plan contains schedule of testing effort. It identifies the

strategies to be used and the resources necessary to
implement and execute testing.

• Test Cases specify tests, its conditions for execution and
associated Test Data.

• Test Scripts are manual or automated procedures needed for
the tests execution. These Test Scripts may be assembled
into Test Suites.

• Test Log is raw data captured during the execution of Test
Suites.

• Test Results represent filtered output from Test Logs. Test
Evaluation Summary is produced as part of the project
iteration assessment.

Deployment

The following types of activities are involved
• Testing at the installation and target sites
• Packaging the software for delivery

• Deployment in custom-built systems
• Deployment of shrink-wrapped software
• Deployment of software that is downloadable over the Internet

• Creating end-user supporting materials
• Creating user training materials
• Migrating existing software or converting databases

The goal is to manage the activities associated with ensuring
that the software product is available for its end users

Workflow Plan Deployment

[Change Requests]

Develop Support
Material

Manage Acceptance Test
(At Development Site)

Produce
Deployment Unit

Beta Test
Product

Manage Acceptance Test
(at Installation Site)

Package Product Provide Access to
Download Site

[Approved]

[Beta Release]

[Customer Release]

[Custom
Install] [Shrinkwrap Product]

[Downloadable Software]

Workflow Details
• Plan Deployment – deployment plan is developed and bill materials are defined.

Deployment plan requires a high degree of customer collaboration and
preparation.

• Develop Support Material – training and support (installation, maintenance,
usage etc.) materials are developed.

• Produce Deployment Unit – deployment unit that consists of the software and
other artifacts required for successful installation are created.

• Manage Acceptance Test (at Development Site) – acceptance testing is
executed and evaluated before the software is installed at the target site.

• Manage Acceptance Test (at Installation Site) – installation and testing at the
target site using actual target hardware is realized.

• Beta Test Product – beta testing requires the delivered software to be installed by
the end user. Feedback is provided by the user community.

• Package Product – optional activities needed to produce “packaged software”
product are carried out.

• Provide Access to Download Site – the hardware and software infrastructure is
developed to enable software product download.

Roles
• Deployment Manager plans and organizes deployment. He/

She is responsible for beta test feedback program and that
the product is packaged and shipped appropriately.

• Project Manager is responsible for approving deployment
and for the customer acceptance of delivery.

• Technical Writer plans and produces end-user support and
training material.

• Graphic Artist is responsible for all product-related artwork.
• Tester runs the acceptance tests.
• Implementer creates installation scripts and related artifacts.

Key Artifacts
• Executable Software in all cases.
• Installation artifacts: scripts, tools, files, guides, licensing

information.
• Release Notes, describing the main features of the release

for the end user.
• Support Materials, such as user, operations and

maintenance manuals.
• Training Materials.
• Bill of Materials is complete list of items to be included in the

product.
• Product Artwork helps with product branding and

identification.

Project Management

The following three purposes are related to project management
• To provide a framework for managing software-intensive

projects
• To provide practical guidelines for planning, staffing,

executing, and monitoring projects
• To Provide a framework for managing risk

Software project management is the art of balancing
competing objectives, managing risk, and overcoming
constraints to deliver a product that meets the needs of the
customers (the ones who pay bills) and the end users.

The Concept of Risk

• Technical/Architectural risks - unproven technology, uncertain
scope, …

• Resource risks - people, skills, funding
• Business risks - competition, return of investments, supplier

interfaces
• Schedule risks - project dependencies, only 24 hours in a day

An ongoing or upcoming concern that has a significant
probability of adversely affecting the success of major
milestones.

Risk Reduction

• Early iterations should address the risks of highest magnitude.
• Risk assessment is a continuous process; risks change over

time.
• An updated Risk List is input to the activity Plan for Next

Iteration.

Tim Lister: All the risk-free projects have been done.

The Concept of Measurement

• Completeness - measurements derived under this aspect,
either through audits or raw data, are useful in determining
the overall completeness status of the project

• Quality – measurements describe the state of the product
based on the type, number, rate, and severity of defects found
and fixed during the course of product development

The measurement is used to evaluate how close or far is the
project from the plan objectives in terms of completeness,
quality, and compliance with requirements.

Measurement is a key technique used to control
projects!

Workflow
Conceive
New Project

Plan for
Next Iteration

Manage
Iteration

Evaluate Project
Scope and Risk

Evaluate Project
Scope and Risk

Plan the
Project

Close Out
Project

Close Out
Phase

Monitor and Control
Project

Plan for
Next Iteration

Plan the
Project

End Iteration

Canceled
Project

[All Subsequent Iterations]

[Project
End]

[Phase
End]

[Iteration
End]

[Phase
Complete]

[Failed
Acceptance]End

Project

[Project
Complete]

Canceled
Project

[Project
Canceled]

[Project
Canceled]

[Iteration
Successful]

[Initial
Iteration in
Inception]

[Start of Project Only]

Canceled
Project

[Project
Canceled]

Workflow Details
• Conceive New Project – the project is elaborated from the initial idea to a point at

which a reasoned decision can be made to continue or abandon the project.
• Evaluate Project Scope and Risk – risks are identified and assessed. The

business case is developed.
• Plan the Project – the project plan is developed so that it can be reviewed for

feasibility and acceptability.
• Plan for Next Iteration – the fine-grained plan for the next iteration is created.

Adjustments to project plan may be needed based on iteration plan.
• Manage Iteration – necessary resource are acquired, the work is allocated and

the results of iteration are evaluated.
• Close Out Project – the final status assessment is prepared for the project

acceptance review.
• Close Out Phase – the final phase status assessment is prepared for the lifecycle

milestone. Required artifacts are distributed to stakeholders, any deployment
problems are addressed.

• Monitor and Control Project – change requests are resolved, risks are monitored
and the progress is measured. Everyday issues and problems are solved.

Roles
• Project Manager is responsible for business case, project

plan, iteration plan, works order as well as for assessment of
plan and iteration status.

• Project Reviewer is responsible for evaluation project
planning artifacts and project assessment artifacts.

Key Artifacts
• Business Case defines the product and project, including the project

justification and the action or business plan as well as development costs
estimation. Ideally, it is defined just prior to the "go to development"
decision (gate).

• Software Development Plan (SDP) consists of product acceptance plan,
risk management plan, problem resolution plan and measurement plan.

• Iteration plan is a fine-grained plan defined for each iteration. It defines
the tasks and their allocation to individuals and teams. A project usually
has two iteration plans active – for the current and next iteration. The
latter is built and the end of the current iteration.

• Iteration and status assessments.

Configuration and Change
Management

Configuration and Change Management (CCM) covers three
interdependent aspects

• Configuration Management (CM) aspect deals with the product
structure. Important artifacts are place under version control. As an
artifacts evolves, multiple version exists, and a developer must identify
the artifact, its version and its change history.

• Change Request Management (CRM) aspect deals with the
description of how the change is processed. Change requests have a
life represented with states such as new, logged, approved,
assigned, and complete. Change request can be raised for variety of
reason: to fix defect, to enhance product quality, to add a requirement
etc.

• Status and Measurement aspect deals with assessment of project
progress relative to the changes, number of changes made, age of
change requests – how long they have been in a particular state (as
above mentioned).

The goal of the configuration and change management discipline is to track and
maintain the integrity of evolving project assets.

Workflow

Plan Project
Configuration and
Change Control

Create Project
CM Environment

Manage
Change Requests

Monitor and Report
Configuration Status

Change and Deliver
Configuration Items

Manage Baselines
and Releases

Workflow Details
• Plan Project Configuration and Change Control – the change control

process and configuration management is established. The configuration
management plan is developed.

• Create Project CM Environment – the work environment where all
development artifacts are available is created.

• Change and Deliver Configuration Items – within a workspace a role can
access project artifacts, make changes to those artifacts, and deliver the
changes for inclusion in the overall product.

• Manage Baselines and Releases – baselines are created at ends of
iterations and at project and delivery milestones. The baseline is a description
of all the versions of artifacts that make up the product at a given time.

• Monitor and Report Configuration Status – the configuration audits are
performed and configuration status reported.

• Manage Change Requests – the changes in a project are made in consistent
manner and the appropriate stakeholders are informed about state of the
product.

Roles
• Configuration Manager is responsible for setting up the product structure

in the configuration management system, for defining and allocating
workspaces for developers, and for integration.

• Change Control Manager oversees the change control process. This
role is usually played by a board that consists of customers, developers,
and users.

• Software Architect provides input to the product structure by means of
the implementation view.

• Implementers access adequate workspaces and the artifacts they need
to change.

• Integrators accept changes in the integration workspace they manage
and build the product.

Key Artifacts
• Configuration Management Plan describes policies and

practices to be used on the project: versions, variants,
workspaces, and procedures for change management, builds,
and releases.

• Change Requests represent a wide variety of items like
changes to requirements, defects documentation and so on.
Each change request should be associated with an originator
and root cause.

Environment

This support includes the following
• Process configuration and improvement
• Tools selection and acquisition, their setup and configuration

to suit the organization
• Technical services to support the development process: the IT

infrastructure, account administration, backup, and so on

The goal of the environment discipline is to support development
organization with both processes and tools.

Workflow

Prepare Environment
for Project

[Inception Iterations]

Prepare Environment
for an Iteration

Support Environment
during an Iteration

Workflow Details
• Prepare Environment for Project – the current development

organization is assessed and the process is tailored for a
given project. List of candidate tools to use for development
is prepared as well as project-specific templates for key
artifacts.

• Prepare Environment for an Iteration – tools are
customized and prepared, the set of project-specific templates
are produced. The guidelines for business modeling,
requirements and other workflows are prepared.

• Support Environment during an Iteration.

Roles
• Process Engineer is responsible for the software

development process itself. This means configuring the
process before project start-up and continuously improving
the process during the development.

• Tool Specialist selects and acquires tools to support
development. He/She sets up and configures the tools to suit
the project needs.

• System Administrator maintains the hardware and software
development environment and performs system
administrative tasks like account administration, backups, and
so on.

Key Artifacts
• Development Case specifies the tailored process for the

individual project. It describes, for each process discipline,
how the project will apply the process. For each process
discipline the decision which artifacts to use and how to use is
made.

Conclusions
Other Approaches

Adaptive versus Predictive

Other Approaches
• Spiral model (Barry Boehm) – evolutionary model where each cycle produces

something to be evaluated, but not it need not be a usable system. Management
of risks is built into the model.

• Prototyping Model - simplified version of the proposed system is presented to the
customer for consideration as part of the development process. The customer in
turn provides feedback to the developer, who goes back to refine the system
requirements to incorporate the additional information. Often, the prototype code is
thrown away and entirely new programs are developed once requirements are
identified.

• Agile Software Processes - agile methods attempt to minimize risk by developing
software in short timeboxes, called iterations, which typically last one to four
weeks. Intensive communication between the developers and customers is
assumed. The key idea is that the process must be adaptable.

• eXtreme Programming (Kent Beck) - XP focuses on frequent testing,
integration, and user review. XP is also known for being "radical" and less
theoretically based than other methodologies. While XP does involve the user in
the development process, it utilizes the actual source code as the design
document and "user stories" as requirements documents, thus limiting
requirements traceability. XP also places all control in the hands of the
development team, which may be counter to many organizational needs.

• …

Spiral Model
(Barry Boehm)

Determine objectives
alternatives
constraints

Evaluate alternat.
 identify, resolve
 risks

Plan next phase
Develop, Verify

next-level product

REVIEW
RA

Prot.1

Risk Analysis

Risk Analysis

Risk Analysis

Prototype Prototype Prototype

2 3

Opera
 tional

Simulation, Models, Benchmarks Concept of
operation

Requirements plan
 Life cycle plan

SW
Requirements

Validation
Development
 plan

Integration and
 test plan

Product
design

Design
V & V

Detailed
design

Code
Unit test

Integr. test
Acceptance. test

Service

eXtreme Programming
• Extreme Programming is based on 12 principles:

• The Planning Process -- Quickly determine the scope of the next release by combining business
priorities and technical estimates. As reality overtakes the plan, update the plan.

• Small Releases -- The software is developed in small stages that are updated frequently, typically
every two weeks.

• Metaphor -- Guide all development with a simple shared story of how the whole system works.
• Simple Design -- The software should include only the code that is necessary to achieve the desired

results communicated by the customer at each stage in the process. Extra complexity is removed as
soon as it is discovered.

• Testing -- Testing is done consistently throughout the process. Programmers design the tests first and
then write the software to fulfill the requirements of the test. The customer also provides acceptance
tests at each stage to ensure the desired results are achieved.

• Refactoring -- XP programmers improve the design of the software through every stage of development
instead of waiting until the end of the development and going back to correct flaws.

• Pair Programming -- All code is written by a pair of programmers working at the same machine.
• Collective Ownership -- Anyone can change any code anywhere in the system at any time.
• Continuous Integration -- The XP team integrates and builds the software system multiple times per

day to keep all the programmers at the same stage of the development process at once.
• 40-Hour Week -- The XP team does not work excessive overtime to ensure that the team remains well-

rested, alert and effective.
• On-Site Customer -- The XP project is directed by the customer who is available all the time to answer

questions, set priorities and determine requirements of the project.
• Coding Standard -- The programmers all write code in the same way. This allows them to work in pairs

and to share ownership of the code.

RUP vs. XP
• RUP is a process framework from which particular processes can be configured and then

instantiated. Such a tailored RUP process could accommodate some XP practices (such as pair
programming and test-first design and refactoring), but would not be identical to XP because of its
acknowledgment of the importance of architecture, abstraction (in modeling), and risk, and its
different structure in time (phases, iterations).

• RUP will permit the construction of processes to accommodate projects that are outside the scope
of XP in scale or kind. A large system development is not suitable for XP.

• RUP shifts much of the effort up-front, both in training requirements and process tailoring. An
organization will also tailor RUP for organization-wide application on particular types and sizes of
projects, and will use the results in several projects. With XP the adoption effort will be spread over
a project lifetime. XP does not obviously motivate the capture of “corporate memory”, leaving
an adopting organization (if it does not save its process experience) vulnerable to staff turnover
(fluctuation).

• XP is about programming to meet a business need. How that business need occurred—and how
it’s modeled, captured, and reasoned about—is not XP’s main concern. The magic of how the „user
stories“ came to be expressed in that form is not the concern of XP.

• The desired behavior of larger, more complex systems can be very difficult to articulate without
some systematic approach such as use cases. Neither will it be possible to rely on conversation
between customer and developer to consistently elaborate complex user stories.

• XP employes CRC (Class, Responsibilities and Collaborations) cards and UML skteches. RUP is
focused on Design Model. But for small project roadmap RUP says: “The Design Model is
expected to evolve over a series of brainstorming sessions in which developers will use
CRC cards and hand-drawn diagrams to explore and capture the design. The Design Model
will only be maintained as long as the developers find it useful. It will not be kept consistent
with the implementation, but will be filed for reference.”

SCRUM

SCRUM

SCRUM Artifacts
• Product backlog

• High level document that describes the whole product
• What should the system do, requirements etc.

• Sprint backlog
• Detailed document that describes the information about the

current sprint.
• Burn down

• Is a public document that shows the work to be done in the
sprint.

SCRUM Meetings
• Daily SCRUM

• During the actual sprint, 15-20 minutes
• Sprint planning meeting

• Before each sprint, limit 8h
• Sprint review meeting

• At the end of the sprint, system previews, limit 4h
• Sprint retrospective

• Feedback from the sprint, answers
• What was done correctly
• What could be done better

Wasatch Mountains, Utah, February 2011

Adaptive vs. Predictive Methods
• Adaptive methods focus on adapting quickly to changing realities. When

the needs of a project change, an adaptive team changes as well. An
adaptive team will have difficulty describing exactly what will happen in the
future. The further away a date is, the more vague an adaptive method will
be about what will happen on that date.

• Predictive methods focus on planning the future in detail. A predictive
team can report exactly what features and tasks are planned for the entire
length of the development process. Predictive teams have difficulty
changing direction. The plan is typically optimized for the original
destination and changing direction can cause completed work to be
thrown away and done over differently.

Adaptive

Agile Iterative Waterfall

Predictive

