
Software Engineering
Prof. Ing. Ivo Vondrak, CSc.
Dept. of Computer Science

Technical University of Ostrava
ivo.vondrak@vsb.cz

http://vondrak.cs.vsb.cz

mailto:ivo.vondrak@vsb.cz
http://vondrak.cs.vsb.cz/

Motto:
A physician a civil engineer, and a computer scientist were
arguing about what was the oldest profession in the world.
The physician remarked, "Well, in the Bible, it says that God
created Eve from rib taken out of Adam. This clearly required
surgery, and so I can rightly claim that mine is the oldest
profession in the world. " The civil engineer interrupt, and
said, "But even earlier in the book of Genesis, it states that
God created the order of heavens and earth from out of chaos.
This was the first and certainly the most spectacular
application of civil engineering. Therefore, fair doctor, you are
wrong: mine is the oldest profession in the world." The
computer scientist leaned back in the chair, smiled, and then
said confidently, "Ah, but who do you think created the
chaos?"

References
• Humphrey, W. Managing the Software Process, Addison-Wesley/SEI series

in Software Engineering, Reading, Ma, 1989
• Gamma, E., Helm,R., Johnson,R., Vlissides,J. Design Patterns, Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1994
• Icon Computing, Inc. Object-Oriented Design, Idioms and Architectures,

Austin, 1996
• Rational Unified Process Whitepaper: Best Practices for Software

Development Teams - Rational Software, 1998
• Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development

Process, Addison Wesley Longman, Inc., 1999
• Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language

User Guide, Addison Wesley Longman, Inc., 1999
• Schmuller, J.: Teaching Yourself UML in 24 Hours, Sams, 1999

Definition of Software Engineering

Software engineering involves:
• technical and non-technical issues
• knowledge of specification, design and implementation

techniques
• human factors
• software management

Software engineering is an engineering discipline
concerned with practical problems of developing large
software systems.

Software Production Layout
Software Process

instantiated by
Project

Project
Project

Project Management
• Planning
• Control

Project Execution
• Analysis
• Design
• Implementation
• Test

consists of consists of

Project
Management
Methodology Software

Development
Methodology

uses
uses

System of
methods for
project
management

System of
methods for
software product
development

is a is a

A Definition of Process

Relationships
of all tasks (workflow)

Tools Skills,
Training,

Motivation, &
Management

PROCESS

A
B

C
D

W. Humphrey and P. Feiler: "A process is a set of partially ordered
steps intended to reach a goal..."(to produce and maintain requested
software deliverables). A software process includes sets of related
artifacts, human and computerized resources, organizational
structures and constraints.

Initial
(1)

Repeatable
(2)

Defined
(3)

Managed
(4)

Optimizing
(5)

Basic management control

Integrated end-to-end process

Measurement

Feedback

Process
discipline

Process
definition

Process
control

Process
improvement

Maturity Levels

Visibility Into the SW Process

In Out

In Out

In Out

In Out

In Out

1

2

3

4

5

The Waterfall Process Model

Requirements
analysis and
definition

System and
SW design

Implementation
 (Coding)

Testing and
Maintenance

The Waterfall Model: Problems
• It takes too long to see results: nothing is executable or

demonstrable until code is produced.
• It depends on stable, correct requirements.
• It delays the detection of errors until the end.
• It does not promote software reuse.
• It does not promote prototyping.
• ...

Exploratory Programming
Develop
outline

specification

Build software
system

Use software
system

System
adequate?

Deliver
software system

NO

YES

Rational Unified Process®

Best Practices:
• Develop software iteratively
• Manage requirements
• Use component-based architectures
• Visually model software
• Verify software quality
• Control changes to software

The Rational Unified Process® is a Software Engineering Process. It
provides a disciplined approach to assigning tasks and responsibilities
within a development organization. Its goal is to ensure the production
of high-quality software that meets the needs of its end-users, within a
predictable schedule and budget.

Develop Software Iteratively
Given today’s sophisticated software systems, it is not possible to sequentially
first define the entire problem, design the entire solution, build the software and
then test the product at the end.
An iterative approach is required that allows an increasing understanding of the
problem through successive refinements, and to incrementally grow an effective
solution over multiple iterations.
Each iteration ends with an executable release.

Manage Requirements
The Rational Unified Process describes how to elicit, organize, and document
required functionality and constraints; track and document tradeoffs and
decisions; and easily capture and communicate business requirements.

Use Component-based Architectures
The Rational Unified Process provides a systematic approach to defining an
architecture using new and existing components.
These are assembled in a well-defined architecture, either ad hoc, or in a
component infrastructure such as the Internet, CORBA, and COM, for which an
industry of reusable components is emerging.

Visually Model Software
The process shows you how to visually model software to capture the structure
and behavior of architectures and components. This allows you to hide the details
and write code using “graphical building blocks”.
The industry-standard Unified Modeling Language (UML), created by Rational
Software, is the foundation for successful visual modeling.

Verify Software Quality
Quality assessment is built into the process, in all activities, involving all
participants, using objective measurements and criteria, and not treated as
an afterthought or a separate activity performed by a separate group.

Control Changes to Software
The ability to manage change - making certain that each change is acceptable,
and being able to track changes - is essential in an environment in which change
is inevitable.

The process describes how to control, track and monitor changes to enable
successful iterative development. It also guides you in how to establish secure
workspaces for each developer by providing isolation from changes made in other
workspaces and by controlling changes of all software artifacts (e.g., models, code,
documents, etc.).

Two Dimensions of the Process

Dynamic aspect of
the process as it is
enacted: it is
expressed in terms
of cycles, phases,
iterations, and
milestones.

Static aspect of the
process: how it is
described in terms of
activities, artifacts,
workers and
workflows.

Cycles and Phases

The development cycle is divided in four consecutive phases
• Inception: a good idea is developed into a vision of the end

product and the business case for the product is presented.
• Elaboration: most of the product requirements are specified

and the system architecture is designed.
• Construction: the product is built – completed software is

added to the skeleton (architecture)
• Transition: the product is moved to user community (beta

testing, training …)

Each cycle results in a new release of the system, and each is a product
ready for delivery. This product has to accommodate the specified
needs.

Iterations
Each phase can be further broken down into iterations. An iteration is a
complete development loop resulting in a release (internal or external)
of an executable product, a subset of the final product under
development, which grows incrementally from iteration to iteration to
become the final system.

Static Structure of the Process

• Workers (Roles) define the behavior and responsibilities of
an individual (designer, analyst, programmer ...), or a group of
individuals working together as a team.

• Artifacts are things that are produced, modified, or used by a
process (model, document, source code …).

• Activities are performed by workers to create or update some
artifacts (review design, compile code, perform test …).

• Workflows are sequences of activities that produce results of
observable value (business modeling, implementation …).

A process describes who is doing what, how, and when using following modeling
elements:

Resources and Workers
Allocating resources (individuals) to workers means matching competencies of
individuals with the required competencies of the workers.

Designer
Architectural

Board Programmer

Richard John Mary Laura

Workers

Resources

Management and Technical Artifacts

Technical artifacts may be divided into:
• Requirements set: business, domain, use case, and analysis

models
• Design set: design, and test models
• Implementation set: implementation model, source code,

configuration, and data files
• Deployment set: deployment model, information about the

way software is actually packaged

The most important kind of artifact are models.

A model is a simplification of reality, created to better understand the system
being created.

The Unified Modeling Language
• The Unified Modeling Language (UML) is a standard

language for writing software blueprints.
• The UML may be used to visualize, specify, construct and

document the artifacts of a software-intensive system.
• Visualizing means graphical language
• Specifying means building precise, unambiguous, and

complete models
• Constructing means that models can be directly connected

to a variety of programming languages

Building Blocks of the UML
UML

Things Relationships Diagrams Grouping

Use case
Object
Class
Interface
Component
Node

Dependency
Association
Generalization
Realization

Use case
Class
Sequence
Collaboration
Statechart
Activity
Component
Deployment

Package
Subsystem
Model

http://www.uml.org

http://www.uml.org/

Core Engineering Workflows
• Business modeling describes the structure and dynamics of

the organization
• Requirement describe the use case-based method for

eliciting requirements
• Analysis and design describe the multiple architectural

views
• Implementation takes into account sw development, unit

test, and integration
• Test describes test cases and procedures
• Deployment covers the deliverable system configuration

Workflows and Models

Business Process Model Domain Model

Use Case Model

Analysis Model

Desing Model Deployment Model

Implementation Model

Test Model

Business Modeling

Requirements

Analysis

Design

Implementation

Test

UML diagrams
provide views into

each model

Each workflow is associated with
one or more models

Core Supporting Workflows
• Configuration Management describes how to control the

numerous artifacts produced by the many people who work on
a common project (simultaneous update, multiple versions …).

• Project Management is the art of balancing competing
objectives, managing risk, and overcoming constraints to
deliver, successfully, a product which meets the needs of both
customers (the payers of bills) and the users.

• Environment Workflow provides the software development
organization with the software development environment—both
processes and tools—that are needed to support the
development team.

Exercises
• What is the software engineering about? What is the

definition of the software negineering?
• What is the difference between software process and

project? What is the relationship between these both?
• Draw the layout of Rational Unified Process and define what

the cycles, phases and iterations mean!

Business Modeling

• Business Process Modeling (How & When). Business
process is a set of one or more linked procedures or activities
which collectively realize a business objective or policy goal.

• Domain Modeling (Who & What) captures the most
important objects in the context of the system. The domain
objects represent the entities that exist in environment in
which the system works.

The main goal of the business process modeling is to provide common
language for communities of software and business engineers.

Motivating Example
Develop an information system for a car dealer. The application should collect and
provide information about customers, their orders, cars, payments etc. The possibility to
communicate with the car manufacturer to obtain updated offer of available cars or to
order a car required by a customer should be the part of the system. The goal is to make
the customer happy!

UML Diagrams for Business Modeling
• Activity Diagram is a variation of a state machine in which

the states represent the performance of activities and the
transitions are triggered by their completion.
• The purpose of this diagram is to focus on flows driven by

internal processing.
• Class Diagram is a graph of elements (in the scope of

business modeling represented by workers and entities)
connected by their various static relationships.
• The purpose of this diagram is to capture static aspect of the

business domain.

Activity Diagram: Car Sale Process

Car Selection

Financing Car Ordering

Car Hand Over

[success]

[not found]

Ref.: Activity diagram
for Financing

Initial
State

Final
State

Action State
(Activity)

Decision

Control
Flow

Note

Join Transition

Fork Transition

Swimlanes: Packages of Responsibilities
AccountantSalesmanCustomer

Car Selection

Financing Car Ordering

Car Hand Over

[success]

[not found]

Checking Payment

[Failed]
[Paid]

Actions may be organized into swimlanes.
Swimlanes are a kind of package for
organizing responsibility for activities
provided by workers.

Activities and Entities
Customer Salesman Accountant

Car Selection

Financing

[success]

Car Ordering

Car Hand Over

[not found]

Checking Payment

Order

Payment [realized]

Payment [checked]

Object (Entity)
Flow

Entity

Class Diagram: Car Sale Elements

«worker»
Customer

«worker»
Salesman

*

communicates

«entity»
Order

0..1

defines�

*

defines�

«entity»
Car

specifies�

*

orders�

«entity»
Payment

realizes�

takes over�

«worker»
Accountant

*

� checks

*
� uses

*

hands over�

Worker defines the behavior and
responsibilities of an individual

Association

Multiplicity
Entity is the process artifact

Exercises
• Install the Poseidon CASE from the web site

www.gentleware.com.
• Specify activity diagrams for the business processes typical

for video lending library.

http://www.gentleware.com/

Alternative Approaches
• Integrated Definition – IDEF (U.S. Air Force)

• http://www.idef.com
• Architecture of Integrated Information Systems – ARIS

(prof. Scheer)
• http://www.ids-scheer.com

• Business Process Modeling – BPM (prof. Vondrak)
• http://www.bpr.cz

• …

http://www.idef.com/
http://www.ids-scheer.com/
http://www.bpr.cz/

Requirements

• Use Case Model examines the system functionality from the
perspective of actors and use cases.
• Actors: an actor is someone (user) or some thing (other

system) that must interact with the system being developed
• Use Cases: an use case is a pattern of behavior the system

exhibits. Each use case is a sequence of related transactions
performed by an actor and the system in a dialog.

The goal of the requirements workflow is to describe what the system should do by
specifying its functionality. Requirements modeling allows the developers and the
customer to agree on that description.

UML Diagrams for Requirements Modeling

• Use Case Diagram shows the relationships among actors
and use cases within a system.
• The purpose of this diagram is to define what exists outside

the system (actors) and what should be performed by the
system (use cases).

• Activity Diagram displays transactions being executed by
actor and system in their mutual interaction.
• The purpose of this diagram is to elaborate functionality of the

system specified in a use case diagram.

Use Case Diagram: Car Sale

Actor

Use Case
Salesman

Car Ordering

Business Monitor

Manager

Car Hand Over

Accountant
Payment Checking System

Boundary

Salesman

Production

Car Ordering

«extends» Car is not available.
It must be produced.

Car Ordering Payment Checking

Logon Validation

«uses» «uses» Password

IS of Car Producer

Structuring Use Cases

A uses relationship
shows behavior that
is common to one or
more use cases

An extends relationship
shows optional behavior

A generalization is the relationship between
a more general use case (the parent) and a
more specific use case (the child) that is fully
consistent with first use case.

Structuring Actors

Salesman Accountant

User

Logon Validation

Car Ordering Payment Checking

A generalization is the
relationship between a
more general actor (the
parent) and a more
specific actor (the child)
that is fully consistent
with first actor.

Elaborate Functionality of Car Ordering
IS of Car ProducerSystemSalesman

Car Specification

Searching for Car

Requirement for Production

Sending Order to Producer

Order Processing

Confirmation of Acceptance

Customer is Informed

[Car Not Found]

[Car Available]

Actor’s
responsibility

Actor’s
responsibility

System
transactions

Exercises
• For the business processes specified during business

modeling workflow identify actors and their use cases.
• Specify activity diagram for the lending process.

Analysis & Design

• Analysis Model examines requirements from the perspective
of objects found in the vocabulary of the problem domain.

• Design Model will further refine the analysis model in light of
the actual implementation environment. The design model
serves as an abstraction of the source code; that is, the
design model acts as a 'blueprint' of how the source code is
structured and written.

• Deployment Model establishes the hardware topology on
which the system is executed.

The goal of the analysis & design workflow is to show how the system will be
realized in the implementation phase.

UML Diagrams for Analysis & Design
• Class Diagram shows set of classes, interfaces and their

relationships
• Class diagrams address the static design view of the system.

• Sequence Diagram is an interaction diagram that emphasizes
the time ordering of messages.

• Collaboration Diagram displays object interactions organized
around objects and their links to one another
• An interaction diagram that emphasizes the structural

organization of objects that send and receive messages.
• Statechart Diagram shows the life history of a given class and

the events that cause a transition from one state to another
• Deployment Diagram shows the configuration of run-time

processing elements
• The purpose of this diagram is to model the topology of

hardware which the system executes.

Use Cases and Objects
Objects are enablers of the sequence of transactions
required by the use case. Use cases and objects are different views of the
same system. An object can therefore typically participate in several use
cases.

Accountant

Salesman

Objects

Use Cases

Order

Warehouse
Manager

What is an Object?
• An Object is an identifiable individual entity with:
• Identity: a uniqueness which distinguishes it from all other

objects
• Behavior: services it provides in interactions with other

objects
• Secondary properties:
• Attributes: some of which may change with time
• Lifetime: from creation of the object to its destruction
• States: reflecting different phases in the object’s lifecycle

Views of Object
• External
• responsibilities of that object
• services provided
• visible properties and associations
• externally visible protocols and interactions

• Internal
• data representations
• implementations of behaviors

Relationships Among Objects
• Links

A link is a physical or conceptual connection between objects
(John Smith works-for Simplex company). Mathematically, a
link is defined as a tuple, that is, an ordered list of objects.

Objects and Their Interactions
• A set of interconnected objects constitutes the system
• Interactions between objects result in:
• Collective behaviors being exercised
• Changes in the logical configurations and states of the

objects and system

Time

Sequence Diagram: Car Ordering

order:Salesman warehouse car database selected car

fill in info

submit

search for (car)

select (car)

* [not found] iterate

car found (selected)

car found (selected)

is reserved?

not reserved

reserve

car reserved

Activation (focus of
control) shows the
period during which an
activity is performed

Asynchronous message; the
sender dispatches the Stimulus
and immediately continues with
the next step in the execution.

Synchronous
message
(procedure
call); the
sender waits
for the
response
(return
message).

While loop; the
message is
repeated until the
condition is fulfilled

Return message; response to
the sender

Object

order:Salesman warehouse car database

fill in info

submit

search for (car)

select (car)

* [not found] iterate

car not found

car not found

order (car)

accepted

car reserved

:IS of Car

Producer

Alternative Scenario
External Information

System

Object Lifeline

order:Salesman warehouse car database selected car

fill in info

submit

search for (car)

select (car)

* [not found] iterate

not reserved

reserve

car reserved

:IS of Car

Producer

[car found] is reserved?

[car not found] order(car)

accepted

Merging Scenarios

Branching

Joining
scenarios

What is a Class?

• Classes are found by examining the objects in sequence diagrams.
• Every object is an instance of one class.
• Classes should be named using the vocabulary of the domain.

A class is the descriptor for a set of objects with common structure, behavior,
relationships and semantics.

Car

Order Warehouse
CarDatabase

selected : Car
 : Car

myCar : Car

anOrder : Order

Objects and Classes
Classes identified in the domain. All
classes are singular nouns starting with
uppercase letter.

Objects (instances) instantiated from classes. A
name of object is underlined. Colon separates
the name and the class of the object. Names
usually start with lowercase letter.

Operations
• The behavior of a class is represented by its operations.
• Operation may be found by examining interaction

diagrams

 : Order : Warehouse

search for (car)

searchFor(in c : Car)

Warehouse

Attributes
• The structure of a class is represented by its attributes.
• Attributes may be found by examining class definitions, the

problem requirements, and applying domain knowledge.

A customer has chosen a model of
the car and has to pay for it some
price.

customer : String
model : String
price : float

Order

isReserved() : boolean

reserve()
assign(in num : Long)

model : String
vin : long

reserved : boolean

Car

submit()

filIIn(in model : String, in extras : String)

customer : String
model : String

price : float

Order

model : String = Ferrari Modena

vin : long = 987654321
reserved : boolean = true

selected : Car

model : String

vin : long
reserved : boolean

 : Car

model : String = Honda Accord 2.0i ES

vin : long = 123456789
reserved : boolean = true

myCar : Car

customer : String = Richard Gere
model : String = Ferrari Modena

price : float = 150000

anOrder : Order

Operations and Attributes
Attributes and
their types

Operations, their
parameters and return
values

Values held
by the object

Relationships
• Relationships between classes specify a way for

communication between objects.
• Sequence and/or collaboration diagrams are examined to

determine what links between objects need to exist to
accomplish required behavior. Objects can send messages
to each other only if the link between them is established.
• An sequence diagram emphasizes the time ordering of

messages.
• An collaboration diagram emphasizes the structural

organization of objects that send and receive messages.

 : Order:Salesman : Warehouse : CarDatabase

searchFor(c:Car)

select(c:Car)

*[not found]: iterate()

submit()

selected : Car

filIIn(model:String, extras:String)

selected:Car

selected:Car

getSpec()

c : Car

<<destroy>>

isReserved()

false

reserve()

reserved

<<create>>

Refined Sequence Diagram

Synchronous message
with arguments

Object creation (stereotype create)

Object destruction
(asynchronous message)

Recursion

:Salesman

 : Order

1: filIIn(model:String, extras:String)

2: reserved:=submit()

c : Car

 : Warehouse

 : CarDatabase

selected : Car

2.1: selected:=searchFor(c:Car)

«global »

«
lo

c
a

l
»

2
.2

:
s
e

le
c

te
d

:=
s

e
le

c
t(

c
:C

a
r)

«
a
s

s
o

c
ia

ti
o

n
 »

2
.2

.1
 *

 [
n

o
t

fo
u

n
d

]
i:

 i
te

ra
te

()

1
.1

:
<

<
c

re
a

te
>

>

2
.3

:
<

<
d

e
s

tr
o

y
>

>

2.2.1.1: getSpec()

«parameter »

2.4
: isR

e
s
erv

ed
()

2.5
: res

erv
e
()

<<self>>

Collaboration Diagram

Link between objects

Synchronous message
with arguments

Asynchronous message

Return value

Message order

Visibility
(local stereotype)

Types of Relationships
• Association describes a group of links with common

structure and common semantics (a Person works-for a
Company). An association a bi-directional connection between classes
that describes a set of potential links in the same way that a class
describes a set of potential objects.

• Aggregation is the “part-whole” or “a-part-of” relationship
in which objects representing the components of something
are associated with an object representing the entire assembly.

• Dependency is a weaker form of relationship showing a relationship
between a client and supplier.

• Generalization is the taxonomic relationship between a more general
element (the parent) and a more specific element (the child) that is fully
consistent with the first element and that adds additional information.

Links and Associations

L1
L2

L3

L5

L4

P1

P2

L1 : Line

Line Point

L2 : Line

L3 : Line

L4 : Line

L5 : Line

P1 : Point

P2 : Point

2..* 0..*

Reality

Links among
objects

Association

Multiplicity

Association Classes

name : String

ssn : String

Salesman

order(in c : Car)

ProductionOrder

startSession()

login : String
password : String
session : int

Authorization

1 0..*

verify(in login, in passwd) : boolean

Users

0..* 1

Modeling an
association
as a class

Association Class is an association that also
has class properties (or a class that has
association properties).

Association
between classes

select(in c : Car)
iterate()

CarDatabase

isReserved()
reserve()

assign(in num : Long)
getSpec()

model : String

vin : long
reserved : boolean

Car

0..*

price : float

LuxuryPackage

automatic : boolean

AirCondition

color : int

LeatherSeats

numOfSpeakers : int

Audio

Aggregations

Shared aggregation;
the part may be
contained in other
aggregates.

Composition; the part is
strongly owned by the
composite and may not
be part of any other

Part

Aggregate Composite

isReserved()
reserve()

assign(in num : Long)
getSpec()

model : String
vin : long

reserved : boolean

Car

submit()

filIIn(in model : String, in extras : String)

customer : String
model : String

price : float

Order

searchFor(in c : Car)

Warehouse

«uses»

*

1

<<instantiate>>

Dependency

The most common kind of
dependency relationship is the
connection between a class that
only uses another class as a

The client class uses the supplier
to create its instance.

Association with navigation

Roles, Types and Interfaces
• Role is the named specific behavior of an object participating

in a particular context (the face it presents to the world at a
given moment).

• Type specifies a domain of objects together with the
operations applicable to the objects (without defining the
physical implementation of those objects).

• Interface is the named set of externally-visible operations.
• Notions of role, type and interface are interchangeable.

Type and Implementation Class

submit()

filIIn(in model : String, in extras : String)

customer : String
model : String

price : float

Order

isReserved()

reserve()
assign(in num : Long)
getSpec()

model : String
vin : long

reserved : boolean

Car
specified

selected

getSpec()

«interface»

Specified
isReserved()
reserve()

«interface»

Selected

isReserved()

reserve()
assign(in num : Long)

getSpec()

model : String
vin : long

reserved : boolean

Car

isReserved()
reserve()

assign(in num : Long)
getSpec()

model : String

vin : long
reserved : boolean

Car

Specified

Selected
submit()
filIIn(in model : String, in extras : String)

customer : String
model : String
price : float

Order

«uses»

«uses»

Role
Type specified by
the interface

Implementation class defines the physical
data structure (for attributes and associations)
and methods of an object. Interface

Realization

Implementation Independence

getSpec()

«interface»

Specified
isReserved()
reserve()

«interface»
Selected

isReserved()

reserve()
assign(in num : Long)
getSpec()

model : String
vin : long

reserved : boolean

Car

getSpec()

«interface»

Specified
isReserved()
reserve()

«interface»
Selected

isReserved()
reserve()

assign(in num : Long)
getSpec()

num : long
reserved : boolean

Motorcycle

+submit()
+filIIn(in model : String, in extras : String)

-customer : String

-model : String
-price : float

Order

+isReserved()
+reserve()
+assign(in num : Long)

+getSpec()

-num : long
-reserved : boolean

Motorcycle

Selected

Specified

«uses»

«uses»

Interface for
Order remains the

same!

automatic : boolean

AirCondition

color : int

LeatherSeats

numOfSpeakers : int

Audio

size : String
type : String

AluWheels

numOfCDs : int

CDPlayer MCPlayer

setDiscount(in d : float)

price : int

Accessory

Generalization/Specialization

Inheritance: re-use
of implementation

Superclass
Subclass. Each
subclass can define its
own implementation of
attributes and services.

Generalization

Visibility
• Public declaration is accessible to all clients.
• Protected declaration is accessible only to the class itself and

its subclasses.
• Private declaration is accessible only to the class itself.

-privateOper()

#protectedOper()

+publicOper()

-privateAttr

#protectedAttr

+publicAttr

Visibility

Another#protectedRole

*

+publicRole

*

Class Diagram

submit()

filIIn()

customer

model

price

Order

isReserved()

reserve()

assign()

getSpec()

model

vin

reserved

Car#specified

select()

iterate()

CarDatabase

0..*

#selected

price

Package

setDiscount()

price

Accessory

LuxuryPackage

1

#package

0..2

SportPackage

#extras0..*
automatic

AirCondition

color

LeatherSeats

numOfSpeakers

Audio

size

type

AluWheel

1

5

A class diagram is a graphic
view of the static structural
model.

Abstract Class: class
that cannot be directly
instantiated.

Exercises
• Identify the objects and their classes based on sequence

diagram of lending process. Specify what operations and
attributes these classes should implement.

• Apply generalization/specialization relationship to classes
Videotape and DVD.

• Construct class diagram for video lending library.

The Dynamic Behavior of an Object
• A state transition (statechart) diagram shows

• The life cycle of a given object
• The events causing a transition from one state to another
• The actions that result from a state change

• State transition diagrams are created for objects with
significant dynamic behavior

• Sequence and/or collaboration diagrams are examined to
define statechart diagram of a class

Initializing

filIIn(model,extras)

Car Ordering

submit()

Initializing

filIIn(model,extras)

searchFor(c)

Searching

submit()

isReserved()

Checking Reservation

[selectedCar] / destroy

reserve()

Reservation

[false]

Statechart Diagram

 : Order

«create »

searchFor(c: Car)

submit()

filIIn(model:String, extras:String)

selected:Car

<<destroy>>

isReserved()

reserve()

false

reserved

A statechart diagram
for a class Order

State

External
event

Composite
State

Guard

Action

Merging Scenarios
Initializing

filIIn(model,extras)

searchFor(c)

Searching

submit()

isReserved()

Checking Reservation

[selectedCar] / destroy

reserve()

Reservation

[false]

order(c:Car)

Production Request[car not found]

[accepted]

 : Order

«create » create

searchFor(c: Car)

submit

filIIn

car not found

order(c:Car)

accepted

reserved

Exercises
• Select two classes from video lending library class diagram

and construct the state diagram for both of them.

Model Management Overview
• A package is a general-purpose mechanism for organizing

elements into groups
• to manage complexity of modeling structures

• A subsystem is a grouping of model elements that represents
a behavioral unit in a physical (real) system.
• to describe the services offered by the subsystem
• to describe the interface of the subsystem

• A model is a simplification of reality, an abstraction of a
system, created in order to better understand the system
• A partitioning of the abstraction that visualize, specify,

construct and document that system
• Subsystems and Models are special cases of package

Packages

GUI

Windows

Sales

Warehouse

<<import>>

<<import>> <<import>>

+Warehouse

+Car

#CarDatabase

+Order

+Window

+TextArea

+Button

Motif

Package

Import relationship adds
the contents of the target
to the source namespace.

Export

Structuring of Car
Ordering subsystem.

Design

• In analysis domain objects are the primary focus.
• In design the other layers are added and refined

• User Interface
• Distribution
• Persistence Mechanism

The design model will further refine the analysis model in light of the actual
implementation environment.

Goal of Design

• Definition of the system architecture
• Identifying design patterns and frameworks
• Software components definition and re-use

Mapping of analysis models into a set of software components with precisely
defined interactions based on system architecture and already existing components

+addElement(in o : java.lang.Object)

+removeElement(in removeElement : java.lang.Object) : boolean

+elements() : java.lang.Object[]

+elementAt(in elementAt : int) : Object

-elementCount : int = 0

java.util.Vector

+select(in c : Car)

+iterate()

CarDatabase

1

-container

1

+isReserved()

+reserve()

+assign(in num : Long)

+getSpec()

-model : String

-vin : long

-reserved : boolean

Car

#elementData0..*

1

-actual

1

+hashCode() : int

#clone() : Object

java.lang.Object

Mapping into Software Components

+select(in c : Car)

+iterate()

CarDatabase

+isReserved()

+reserve()

+assign(in num : Long)

+getSpec()

-model : String

-vin : long

-reserved : boolean

Car

0..*

Analysis Model

Design Model

Implementation
Environment

System Architecture
The organizational structure and associated behavior of a system.

User InterfaceCore = ModelDB - Persistence

Distribution

Adapter
object

Adapter
object

 : CarDatabase

con : java.sql.Connection

sql : java.sql.Statement

rs : java.sql.ResultSet

1
:
s
q
l:
=

c
re

a
te

S
ta

te
m

e
n
t(

)

2: rs:=executeQuery("SELECT * FROM Cars")

3.i.1: m
odel:=getString("m

odel")

3.i.2: vin:=getLong("vin")

3.i.3: reserved:=getBoolean("reserved")

car : Car

«
c
re

a
te

 »
 3

. i.4
:

3
. i.5

: a
s
s
ig

n
(m

o
d

e
l,v

in
, re

s
e
rv

e
d
)

 : java.util.Vector

3.i.
6: a

ddEle
m

ent(c
ar)

For all elements from result set

3
.i
 *

[i
=

1
..
n
]:
 p

o
p
u
la

te
()

Interface to Database
Populating CarDatabase
object from relational
database

Adapter to
relational database

Design Patterns
• The design pattern concept can be viewed as an abstraction

of imitating useful parts of other software products.
• The design pattern is description of communicating

objects and classes that are customized to solve a general
design problem in a particular context.

Classification of Design Patterns
• Creational patterns defer some part of object creation to a

subclass or another object.
• Structural patterns composes classes or objects.
• Behavioral patterns describe algorithms or cooperation of

objects.

Factory – Creational Pattern
Intent - provide an interface for creating families of related objects without
specifying their concrete classes.

Motivation
+open()
+close()

-x : int
-y : int

-width : int
-height : int
-backgound : int

Window

Order

WinLookWindow

MotifLookWindow

+align(in type : int)

-font

TextArea

WinLookTextArea

MotifLookTextArea

-window

-area

«instantiate»

«instantiate»
{OR}

«instantiate»

«instantiate»

{OR}

Constraint

Factory - Solution
Order

Window

-window

WinLookWindow MotifLookWindow

TextArea

-area

MotifLookTextAreaWinLookTextArea

+createWindow() : Window
+createTextArea() : TextArea

Factory

-factory

+createWindow() : Window

+createTextArea() : TextArea

WinLookFactory

+createWindow() : Window
+createTextArea() : TextArea

MotifLookFactory

«instantiate»

«instantiate»

«instantiate»

«instantiate»

return new MotifLookWindow();

return new MotifLookTextArea();

Factory - Abstraction
Client

AbstractProductA

-productA

ProductA2 ProductA1

AbstractProductB

-productB

ProductB1ProductB2

+createProductA() : AbstractProductA
+createProductB() : AbstractProductB

AbstractFactory

-factory

+createProductA()

+createProductB()

ConcreteFactory2

+createProductA()
+createProductB()

ConcreteFactory1

«instantiate»

«instantiate»

«instantiate»

«instantiate»

Abstract Class:
class without
instances

Composite – Structural Pattern
Intent - compose objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects and compositions of
objects uniformly.

Motivation

Car

getPrice()

Accessory
add(in a : Accessory)

remove(in a : Accessory)
getChild(in index : int)

Package

getPrice()

AirCondition

getPrice()

Audio

getPrice()

LeatherSeats

-package*

-accessory*

1..*

Composite - Solution

Car
add(in a : Accessory)
remove(in a : Accessory)

getChild(in index : int)
getPrice()

Accessory
-accessory

getPrice()

AirCondition

getPrice()

Audio

getPrice()

LeatherSeats

add(in a : Accessory)
remove(in a : Accessory)

getChild(in index : int)
getPrice()

Package

-accessory

1..*

Composite - Abstraction

add(in a : Component)
remove(in a : Component)

getChild(in index : int)
operation()

Component

operation()

Leaf

add(in a : Component)

remove(in a : Component)
getChild(in index : int)
operation()

Composite

-component

1..*

for all components
operation()

empty body

Client

Observer – Behavioral Pattern
Intent - define a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

Motivation

paid()
toString() : String

amount : float

dueDate : Date
date : Date

Invoice

send(in invoice : String)

phone : String

SMSGate

-manager

-salesman

display(in inv : Invoice)

PaymentMonitor-accountant

manager.send(toString());
salesman.send(toString());

accountant.display(this);

attach(in o : Observer)
detach(in o : Observer)

notify()

Subject

update()

Observer-observer

*

-subject

paid()

toString() : String

amount : float

dueDate : Date
date : Date

Invoice

send(in invoice : String)

update()

phone : String

SMSGate

display(in inv : Invoice)

update()

PaymentMonitor

for all observer
observer.update()

send(subject.toString()) display(subject)
notify()

Observer - Solution

Observer – Solution (Collaboration)

Multi-Object: a
set of objects of
the same class

Iteration

banking

 : Invoice : SMSGate

 : PaymentMonitor

1.1.i * [i=1..2]: update()
1.1.i.1: text:=toString()

subject

observer

1.1.3: update()

subject

observer

1.1: notify()

«
s
e

lf »

1
: p

a
id

()

1.1.i.2: send(text)

«
s
e

lf »

1.1.3.1: display(subject)

«
s
e

lf »

Observer - Abstraction

attach(in o : Observer)
detach(in o : Observer)

notify()

Subject

update()

Observer-observer

*

-subject

getState()
stateChanged()

ConcreteSubject

update()

ConcreteObserver

for all observer
observer.update()

subject.getState()notify()

Exercises
• Describe the design pattern Observer.
• Try to integrate desing pattern Observer into the design of

video lending library.

Frameworks
• A set of abstract and concrete classes that comprise a generic

software subsystem.
• Framework is calling our classes => full control of flow

Class1

+isReserved()

+reserve()
+assign(in num : Long)

+getSpec()

-model : String
-vin : long

-reserved : boolean

Car

Class_nClass_i

1..* 1 0..*

Honda

+add(in a : Accessory)

+remove(in a : Accessory)
+getChild(in index : int)

+getPrice()

Package

ES LS

User Level

MVC – Application Framework
• Any application can be divided into two parts:

• The domain model, which handles data storage and
processing.

• The user interface, which handles input and output.
• Model-View-Controller Architecture

• Model: domain state and behavior (dynamic object).
• View: display current state of dynamic object.
• Controller: effect user-evoked behavior from the dynamic

object.

MVC Classes

Model
addDependent(View v)
removeDependent(View v)
notify()

Controller
menu()
mouseClicked()
keyPressed()
...

View
update()
display()

dependent

Input from user Output

*

MVC Example
Model
addDependent(View v)
removeDependent(View v)
notify()

Controller
menu()
mouseClicked()
keyPressed()

View
update()
display()

dependent

CounterController
increment()
decrement()

Counter
int state
setState(int value)
getState()
increment()
decrement()

CounterView
TextField field
update()

model.increment()

state = value;
this.notify(); value = getState()+1;

setState(value);

value = model.getState();
field.setText(value);
display();

model

model

Deployment Model
• Deployment diagram shows the configuration of run-time

processing elements
• The purpose of this diagram is to model the topology of

hardware which the system executes.

Deployment Diagram
<<workstation>>
Salesman 1

<<workstation>>
Salesman 2

<<workstation>>
Accountant

<<workstation>>
Manager

<<network>>
LAN

<<server>>
Showroom

<<network>> Internet

<<SQL server>>

Warehouse

<<ERP>>

Production

Workstation

Network

Server

Server running
SQL database

Implementation

• Implementation Model describes how elements in the
design model, such as design classes, are implemented in
terms of components such as a source code files,
executables, and so on. The implementation model also
describes how the components are organized according to
the structuring and modularization mechanism available in
the implementation environment and the programming
language (e.g. package in Java).

The goal of the implementation workflow is to flesh out the designed architecture and
the system as a whole.

UML Diagrams for Implementation

• Component Diagram illustrates the organization and
dependencies among software components – physical and
replaceable part of a system that conforms to and provides
the realization of a set of interfaces. A component may be
• A source code component
• A binary or executable component
• Others (database tables, documents) …

• Deployment Diagram is refined to show the configuration of
run-time processing elements and the software components,
processes, and objects that execute on them.

Mapping
Analysis & Design

Class
Role, Type, Interface
Operation
Attribute (Class)
Attribute (instance)
Association
Dependency

Interaction between
objects
Use Case
Package/Subsystem

Source code (Java)

Class
Interface
Method
Static variable
Instance variable
Instance variables
Local variable or argument in method or
return value
Call to a method

Sequence of calls
Package

Design Results

+isReserved() : boolean

+reserve()

+assign(in num : Long)

+getSpec() : String

#model : String

#vin : long

#reserved : boolean

Car

+add(in a : Accessory)

+remove(in a : Accessory)

+getChild(in index : int) : Accessory

+getPrice() : float

Accessory

+accessory

+getPrice() : float

AirCondition

+getPrice() : float

Audio

+getPrice() : float

LeatherSeats

+add(in a : Accessory)

+remove(in a : Accessory)

+getChild(in index : int) : Accessory

+getPrice() : float

Package

-accessory

1..*

+submit() : boolean

+filIIn(in model : String, in extras : String)

#customer : String

#price : float

Order
Specified

Selected

+searchFor(in s : Specified) : Selected

Warehouse

#warehouse

Component Diagram: Source Code

File Component

Dependency
Relationship

Contained classes:
Accessory
Package
AirCondition
Audio
LeatherSeats

«file»

Order.java

«file»

Car.java

«import»

«file»

Selected.java

«file»

Specified.java

«friend»

«friend»

«file»

Accessory.java

«friend»

«file»

Warehouse

«import»

«import»

Source Code: Order.java

import cars.Car;
import warehouse.Warehouse;
public class Order {
 protected String customer;
 protected float price;
 protected Specified specified;
 protected Selected selected;
 protected Warehouse warehouse;

 public void fillIn(String model, String extras) {
 Specified specified = new Car(model, extras);
 }
 public boolean submit() {
 // warehouse is assigned through network
 selected = warehouse.searchFor(specified);
 if (selected.isReserved())
 return false;
 selected.reserve();
 return true;
 }
}

+isReserved()

+reserve()

+assign(in num : Long)

+getSpec()

#model : String

#vin : long

#reserved : boolean

Car

+submit() : boolean

+filIIn(in model : String, in extras : String)

#customer : String

#price : float

Order
Specified

Selected

+searchFor(in s : Specified) : Selected

Warehouse

#warehouse

Specified.java, Selected.java, Car.java

package cars;
public interface Selected {
 boolean isReserved();
 void reserve();
}

package cars;
public interface Specified {
 String getSpec();
}

package cars;
public class Car implements Specified, Selected {
 protected String model;
 protected long vin;
 protected boolean reserved;
 public Accessory accessory;

 public boolean isReserved() {
 return reserved;
 }
 public void reserve() {
 reserved = true;
 }
 public void assign(long num) {
 vin = num;
 }
 public String getSpec() {
 return model;
 }
}

+isReserved() : boolean

+reserve()

+assign(in num : Long)

+getSpec() : String

#model : String

#vin : long

#reserved : boolean

Car

+add(in a : Accessory)

+remove(in a : Accessory)

+getChild(in index : int) : Accessory

+getPrice() : float

Accessory

+accessory

Specified

Selected

Accessory.java
package cars;
public abstract class Accessory {
 public void add(Accessory a) {}
 public void remove(Accessory a) {}
 public Accessory getChild(int index) {
 return null;
 }
 public abstract float getPrice();
}

class AirCondition extends Accessory {
 public float getPrice() {
 return 2000.0f;
 }
}
// other “friend” classes
class Package extends Accessory {
 private Accessory[] accessory;

 public void add(Accessory a) {/*code*/}
 public void remove(Accessory a) {/*code*/}
 public Accessory getChild(int index) {
 return accessory[index];
 }
 public float getPrice() {
 float sum=0;
 for (int i=0; i < accessory.length; i++) {
 sum = sum + accessory[i].getPrice();
 }
 return sum;
 }
}

+add(in a : Accessory)

+remove(in a : Accessory)

+getChild(in index : int) : Accessory

+getPrice() : float

Accessory

+getPrice() : float

AirCondition

+getPrice() : float

Audio

+getPrice() : float

LeatherSeats

+add(in a : Accessory)

+remove(in a : Accessory)

+getChild(in index : int) : Accessory

+getPrice() : float

Package

-accessory

1..*

Component Diagram: Binaries

«file»

Accessory.java

«executable»

Accessory.class

«executable»

Package.class

«executable»

AirCondition.class

«executable»

Audio.class

«executable»

LeatherSeats.class

«compilation» «compilation»

«compilation»

«compilation»

«compilation»

Source Code File

Compiled (Java
Bytecode) File

Component Diagram: Run-Time

«executable»

CarDatabase.class

«library»

rt.jar

«executable»

sql.exe

«table»

Cars

«executable»

java.exe

«document»

font.properties

Configuration
Document

SQL Server

Relational TableJava Virtual
Machine

Compiled Source
File

Java Run-Time
Library

Refined Deployment Diagram
<<server>> Showroom

<<server>> Warehouse

«executable»

CarDatabase.class

«executable»

sql.exe

«executable»

java.exe

«table»

Cars

«document»

font.properties

«library»

rt.jar

Showroom
Server

Warehouse
Server

Unit Tests

• Specification testing, or "black-box testing" verifies the unit's
externally observable behavior

• Structure testing, or "white-box testing", verifies the unit's
internal implementation

• Integration and system tests must be done to ensure that
several components behave correctly when integrated

• Other tests of performance, memory usage and load

The purpose of performing a unit test is to test the implemented components as
individual units. The following types of unit testing are done:

Exercises
• Based on class diagram of video lending library define the

source component diagram.
• For the two classes with state diagram specified write the

source code in Java programming language.

Test

The purposes of testing are:
• Plan the tests required in each iteration, including integration

tests and system tests. Integration tests are required for every
build within the iteration, whereas system tests are required only
at the end of the iteration.

• Design and implement the tests by creating test cases that
specify what to test, creating test procedures that specify how
to perform the tests, and creating executable test components
to automate the tests if possible

• Perform the various tests and systematically handle the results
of each test. Builds found to have defects are retested and
possibly sent back to other core workflows, such as design
and implementation, so that the significant defects can be fixed.

Tests are carried out along three quality dimensions reliability, functionality,
and system performance. Testing is related to all models and their
diagrams!!!

Verification and Validation

• Verification: Are we building the product right? => The
discovery of defects in the system.

• Validation: Are we building the right product? => The
assessment of whether or not the system is usable in an
operational situation.

Verification and validation (V&V) is the term for checking processes which
ensure that the software meets its requirements and that the requirements meet
the needs of software procurer.

Static and Dynamic V&V
• Static techniques are concerned with the analysis of the

system representation such as the requirements, analysis,
design and program listing. ST can only check the
correspondence between a program and its specification
(verification).

• Dynamic techniques involve exercising an implementation.
DT can demonstrate that the software operation is useful
(validation). Static

verification

Requirements Analysis Design Implementation

Prototype Dynamic
validation

Test Model
Test Model is a collection of:
• Test cases, which specify what to test in the system.
• Test procedures, which specify how to perform the test

cases.
• Test components, which automate the test procedures

Test Case

The following are common test cases:
• A test case that specifies how to test a use case or a specific

scenario of a use case. Such a test case includes verifying
the result of the interaction between the actor and the system
("black-box" test). Black-box test is the test of the
externally observable behavior of the system

• A test case that specifies how to test a use case realization.
Such a test case includes verifying the interaction between
the components implementing the use case ("white-box"
test). White-box test is the test of the internal interaction
between components of the system

Test case specifies one way of testing the system, including what to test with
which input, and under which condition to test.

Test Procedure

Test procedures can be based on the following:
• Instructions for an individual on how to perform a test case

manually
• Description of how to create executable test components
• Specifications of how to interact with a test automation tool

Test procedure specifies how to perform one or several test cases or parts
of them.

Test Component

Test components can be developed using:
• Scripting language or a programming language
• Test automation tool

Test component automates one or several test procedures or parts of them.
Test components are used to test the components in the implementation
model by providing test inputs, controlling and monitoring the execution of
the tested component, and possibly reporting the test results.

Deployment

• Producing external releases of the software.
• Packaging the software.
• Distributing the software.
• Installing the software.
• Providing help and assistance to users.
• Planning and conduct of beta tests.
• Migration of existing software or data.

The purpose of the deployment workflow is to successfully produce product
releases, and deliver the software to its end users. It covers a wide range of
activities including:

