
Methods for Software Specification

Prof. Ing. Ivo Vondrak, CSc.
Dept. of Computer Science

Technical University of Ostrava
ivo.vondrak@vsb.cz

http://vondrak.cs.vsb.cz

mailto:ivo.vondrak@vsb.cz
http://vondrak.cs.vsb.cz/

References
• Rumbaugh, James et al. Object-Oriented Modeling and Design, Prentice Hall Inc.

1991
• Booch, Grady: Object-Oriented Analysis and Design, The Benjamin/Cummings

Publishing Company, Inc. 1994
• Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G.: Object Oriented

Software Engineering, A Use Case Driven Approach, Addison-Wesley, 1994
• Gamma, E., Helm,R., Johnson,R., Vlissides,J. Design Patterns, Elements of

Reusable Object-Oriented Software, Addison-Wesley, 1994
• Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User

Guide, Addison Wesley Longman, Inc., 1999
• Schmuller, J.: Teaching Yourself UML in 24 Hours, Sams, 1999
• OMG Unified Modeling Language Specification, version 1.5, http://www.uml.org,

2003
• Warmer, J., Kleppe, A.: The Object Constraint Language Second Edition, Getting

Your Models Ready for MDA, Addison-Wesley, 2003

Contents
• Introduction
• UML Language
• Formal Methods of Specification
• Design Patterns

Definition of OOM
• Method is well-considered (sophisticated) system of doing

or arranging something.
• Architecture is the organizational structure and associated

behavior of a system.
• Object is an entity with a well-defined boundary and identity

that encapsulates state and behavior. An object is an
instance of a class.

• Object-oriented architecture is the structure of connected
objects that define resulting behavior of the system through
their communication (interactions).

Object-oriented method is sophisticated system of doing
software based on object-oriented architecture.

Three Sources of UML

OMT
Object Modeling Technique

J. Rumbaugh

Booch Method
...

G. Booch

OOSE
Object-oriented Software Engineering

I. Jacobson

UML
Unified Modeling Language

Rational

Standardized by OMG

Iterative Software development
An iterative approach is required that allows an increasing
understanding of the problem through successive
refinements, and to incrementally grow an effective solution
over multiple iterations.

Core Engineering Workflows
• Business modeling describes the structure and dynamics of

the organization
• Requirement describe the use case-based method for

eliciting requirements
• Analysis and design describe the multiple architectural

views
• Implementation takes into account sw development, unit

test, and integration
• Test describes test cases and procedures
• Deployment covers the deliverable system configuration

The Unified Modeling Language
• The Unified Modeling Language (UML) is a standard

language for writing software blueprints.
• The UML may be used to visualize, specify, construct and

document the artifacts of a software-intensive system.
• Visualizing means graphical language
• Specifying means building precise, unambiguous, and

complete models
• Constructing means that models can be directly connected

to a variety of programming languages

Language Architecture
Layer Description Example

Meta-metamodel

The infrastructure for a
metamodeling architecture. Defines
the language for specifying
metamodels.

MetaClass, MetaAttribute,
MetaOperation

Metamodel
An instance of a meta-metamodel.
Defines the language for specifying
a model.

Class, Attribute, Operation,
Component

Model
An instance of a metamodel.
Defines a language to describe an
information domain.

StockShare, askPrice,
sellLimitOrder,
StockQuoteServer

User Objects (User
Data)

An instance of a model. Defines a
specific information domain.

<Acme_SW_Share_98789>,
654.56, sell_limit_order,
<Stock_Quote_Svr_32123>

Four-layer Metamodel Architecture

UML Diagrams
• Use Case diagram
• Class diagram
• Behavior diagrams:

• Statechart diagram
• Activity diagram

• Interaction diagrams:
• Sequence diagram
• Collaboration diagram

• Implementation diagrams:
• Component diagram
• Deployment diagram

Functional View

Logical View

Behavioral View

Implementation View

Software Lifecycle and UML
Diagams
Activity diagrams
Class diagrams

Use Case diagrams
Sequence diagrams

Class diagams
Sequence diagrams
Collaboration diagrams
Statechart diagrams
Deployment diagrams

Component diagrams
Deployment diagrams

Exercises
• What is the object-oriented methods about? What is the

definition of the object-oriented method?
• What diagrams are used to specify each workflow of the

software development iteration?
• What is the UML language architecture. Describe four-layer

metamodel architecture!

Functional View of the System

• Use case diagram shows the relationships among actors and
use cases within a system.

• Actor is coherent set of roles that users of use cases play
when interacting with these use cases. An actor has one role
for each use case with which it communicates.

Use case is the specification of a sequence of actions,
including variants, that a system (or other entity) can
perform, interacting with actors of the system.

Use Case Diagram
e-Shop

Order Processing

Product delivery

Customer
Salesman

Dispatch worker

Actor

Use Case

System border

Relationship between Use Cases
• Extend is a relationship from an extension use case to a base

use case, specifying how the behavior defined for the
extension use case extends the behavior defined for the base
use case. The base use case does not depend on performing
the behavior of the extension use case.

• Include is a relationship from a base use case to an inclusion
use case, specifying how the behavior for the base use case
contains the behavior of the inclusion use case. The base use
case depends on performing the behavior of the inclusion use
case.

• Generalization is a relationship between a more general use
case and its more specific version.

Use Case Relationships Example

Order processing

Payment checking

Catalog offering

Customer data entry

Express order processing

«include» «include»

«extends»

Salesman

Include
relationship

Extend
relationship

Generalization

Relationships between Actors

Customer data entry

Salesman

Employee

Login into system

Generalization

Exercises
• What entities are used by use case diagrams?
• List and describe all kind of relationships used by use

case diagram specification!
• Specify all use cases employed by the customer of

eShop!

Logical View of the System

• Class diagram shows a collection of declarative (static)
model elements, such as classes, types, and their contents
and relationships.

• Object diagram encompasses objects and their relationships
at a point in time. An object diagram may be considered a
special case of a class diagram or a collaboration diagram.

Static structure of the system specifies entities, their
structure and relationships among them. For that
purpose class and object diagrams are used.

Class and Type of Object
• Object is an identifiable individual entity with given identity (a uniqueness

which distinguishes it from all other objects) and behavior (services it
provides in interactions with other objects) .

• Class is a description of a set of objects that share the same attributes,
operations, methods, relationships, and semantics. A class may use a set
of interfaces to specify collections of operations it provides to its
environment.

• Type specifies a domain of objects together with the operations applicable
to the objects, without defining the physical implementation of those
objects. Although an object may have at most one implementation class, it
may conform to multiple different types.

Classes, Types and Objects

+publicOperation()

#protectedOperation() : bool

-privateOperation(in x : float)

+publicAttribute : float

#protectedAttribute : Class1

-privateAttribute : Type1

ClassName

+publicOperation1() : Class1

+publicOperation2(in param : Type1)

«type»

TypeName

+change(in j : int)

#i : int

-x : float

Class1

if (j > o) then i = j

else i = j * (-1)

i : int = 1

x : float = 3,14159

instance : Class1

i : int = 0

x : float

xyz : Class1

i : int

x : float

 : Class1

Classes and types

Class instances

Class
Type

Object

Note

Attributes
Operations

Object
name

Implementation Class and Interface
• Implementation class is said to realize a type if it provides all

of the operations defined for the type with the same behavior
as specified for the type's operations.

• Interface is a named set of operations that characterize the
behavior of an element.

Implementation Class Example

+add(in o : Object)

+remove(in o : Object)

+itemAtPosition(in i : int) : Object

+next() : Object

+isEmpty() : bool

-items[] : Object

Catalog

+next() : Object

+isEmpty() : bool

«type»

Iterator

+add(in o : Object)

+remove(in o : Object)

+itemAtPosition(in i : int) : Object
+next() : Object

+isEmpty() : bool

Catalog

Iterator

Class Catalog
implements type

Iterator

Interface Iterator

Relationships Among Objects
and Classes
• Association describes a group of links with common

structure and common semantics (a Person works-for a
Company). An association a bi-directional connection between classes
that describes a set of potential links in the same way that a class
describes a set of potential objects.

• Aggregation is the “part-whole” or “a-part-of” relationship
in which objects representing the components of something
are associated with an object representing the entire assembly.

• Dependency is a weaker form of relationship showing a relationship
between a client and supplier.

• Generalization is the taxonomic relationship between a more general
element (the parent) and a more specific element (the child) that is fully
consistent with the first element and that adds additional information.

Association

+process() : Order

+ship() : Order

+checkPayment()

-ssn

-position

Employee

-date

-price

Order
+salesman

1 1..*

is processing

+dispatcher1

-{ordered} 1..*ships

Role of Object

Association

Multiplicity
Ordering

Association
Name

Qualified Association

+process() : Order

+ships() : Order

+checkPayment()

-ssn

-position

Employee

-date
-price

Order+salesman

1 1

is processing

orderNumber

Qualifier /Key

Association Class

+ordering()

-name : string

-surname : string

Customer

-date

-price

Order

+authentication()

-number : long

-login : string

-password : string

Authorization

1 0..*

Aggregation and Composition

+add(in o : Object)

+remove(in o : Object)

+itemAtPosition(in i : int) : Object
+next() : Object

+isEmpty() : bool

Catalog

-název : string
-cena : float

Položka

1

*

-date

-price

Order

+sleva()

-dodavatel

Zboží

1

*

1 1

Shared aggregation;
the part may be
contained in other
aggregates. Composition; the part is

strongly owned by the
composite and may not
be part of any other

Dependency

+ordering()

-name : string

-surname : string

Customer

-date

-price

Order

+add(in o : Object)

+remove(in o : Object)

+itemAtPosition(in i : int) : Object

+next() : Object
+isEmpty() : bool

Catalog

«instantiate»

«use»

Generalization

+discount()

-producer

Merchandise

+extendedWarranty()

-mark : string

Electronics

+discount()

-name : string

-author : string

MusicCD

+discount()

-type : string

MobilePhone

+discount()

-size : int

-screenType : string

TVSet

Exercises
• Define what is the object, class and type!
• What kind of relationships can be defined among classes?
• Build the class diagram describing academic community.

Academic community consists of educators and students.
Educators are assistants, assistant professors, associate
professors and professors. Educators play roles of
supervisors to other educators that play roles of subordinated.

Behavioral View of the System
• A set of interconnected objects constitutes the

system
• Interactions between objects result in:
• Collective behaviors being exercised
• Changes in the logical configurations and states of

the objects and system

Sequence Diagram

Customer

:Login

aut:Authorization

db:CustomerDatabase

enter (login, password)

«create»

verify(aut)

register()

query

response

result

getLogin()

login

getPassword

password

Asynchronous Message

Name of object and its
class name

Object lifeline

Object Destruction

Synchronous Message

Activation (focus of
control)

Return value

Structured Sequence Diagram

:Catalog:ListBoxform:

isEmpty()

result

další()

položka

display()

add(položka)

Loop

Alt [result = true]

Add item to the list

Ref

sd: Catalog Listing

:Catalog:ListBoxform:

next()

item

add(item)

sd: Add item to the list

Loop with embedded alternative (Alt) and
reference to another sequence diagram
(Ref).

Elaborated Diagram

The Dynamic Behavior of an Object
• A state transition (statechart) diagram shows

• The life cycle of a given object
• The events causing a transition from one state to another
• The actions that result from a state change

• State transition diagrams are created for objects with
significant dynamic behavior

• Sequence diagrams are examined to define statechart
diagram of a class

Statechart Diagram

do/query

Login Dialog

login()

Authentication

enter(name,password)

[accepted]

[declined]

cancel()

Initial

Success

Failed

Initial
State

Final
State

A statechart diagram
for a class Login

State

Composite
State

Transition enabled by
the event

Elaborated Composite State

do/create

Create Authentication

do/verity

Verification in Database

do/result

Successful Login

do/result

Customer Declined

[accepted]

[success]

[declined]

[failure]

Workflow Modeling

• Activity Diagram is a variation of a state machine in
which the states represent the performance of
activities and the transitions are triggered by their
completion.
• The purpose of this diagram is to focus on flows

driven by internal processing.

Activity Diagram
SalesmanAccountantCustomer

Order

Accept an Order

Order Execution

Issue an Invoice

Invoice

Shipping the ProductPaying

Payment Acceptance

Payment

[unrealizable]

Case Closed

Issue an Order

Action State
(Activity)

Decision

Control
Flow

Join Transition

Fork Transition

Object Flow

Object

Actions may be organized
into swimlanes.
Swimlanes are a kind of
package for organizing
responsibility for
activities provided by
workers.

Object Collaboration
An collaboration diagram emphasizes the structural organization
of objects that send and receive messages.

 : Login

aut : Authorization

db : CustomerDatabase

1: register

2: query
3: enter(login, password)

3.3: result
3
.1

:
<
<

cr
ea

te
>

>

«
lo

ca
l»

3.2: response = verify(aut)

«association»

«global»

3.2.1
: lo

gin
 = g

etL
ogin(

)

3.2
.2: p

ass
word =

 getP
ass

word
()

«para
meter»

3.2.3 *[i = 1..n]: verifyCustomer(i, login, password)

«
se

lf»

Object

Synchronous message
and its return value

Asynchronous
message

Visibility

Link between objects

Exercises
• What is the difference between sequence and collaboration

diagram?
• What is the purpose of state chart diagram?
• Build a sequence diagram for the task of money withdrawal

from ATM. Consider interaction between Client, ATM and
Credit Card.

Implementation View of the System

• Implementation Model describes how elements in the design
model, such as design classes, are implemented in terms of
components such as a source code files, executables, and so
on. The implementation model also describes how the
components are organized according to the structuring and
modularization mechanism available in the implementation
environment and the programming language (e.g. package in
Java).

The goal of the implementation workflow is to flesh out the
designed architecture and the system as a whole.

Component Diagram

«library»

rt.jar

«document»

font.properties

«executable»

CustomerDatabase.class

«table»

Customers

«executable»

java.exe

«file»

CustomerDatabase.java
«executable»

mySQL.exe

«use» «use»

«call»

«use»
«use»

«compilation»

Library
Component

Source
component

Executable
Component

“Use” relationship
between two components.

Component Diagram illustrates the
organization and dependencies
among software components.

Deployment Diagram
e-Shop

Database Server

«executable»

CustomerDatabase.class

«executable»

java.exe

«use»

«document»
font.properties

«use»

«library»
rt.jar

«use»

«executable»

mySQL.exe

«call»

«table»

Customers

«use»

Deployment diagram shows the
configuration of run-time processing
elements.

Exercises
• Define deployment diagram for e-Shop based on .Net

technology.

Formal Methods

• Formal methods include
• Formal specification
• Specification analysis and proof
• Transformational development
• Program verification

• Language for formal specification has to have precise and
unambiguous syntax and semantics.

Techniques for the precise and unambiguous
specification of software

Mathematical Representation of Software

• Formal specifications are expressed in a mathematical
notation with precisely defined vocabulary, syntax and
semantics.

• Algebraic approach
• The system is specified in terms of its operations and their

relationships.
• Model-based approach

• The system is specified in terms of a state model that is
constructed using mathematical constructs such as sets and
sequences.

Finite Automata
• Finite automata are defined by

• Q 		 – finite set of states
• I 	 	 	 – finite set of inputs
• δ: Q × I → Q 	 – state transition function

• Visualization is based on statechart diagrams

Lights on Lights off

Push light switch

Push light switch

Input

State

Transition

Finite Automata Cont …
• Initial and final states

• q0	- initial state
• F ⊆ Q	 - set of final states

• Sequence of inputs is accepted by automaton when a final state is
reached from the initial state.

Lights off Lights on

Push light switch

Push light switch Plug

Initial

Unplug Unplug

Final
Unsafe

final

Initial state

Final state

Example: Login behaviour
• Q = {Initial, Login Dialog, Authentication, 	

Success, Failed}
• I = {login, enter, cancel, accepted, declined}
• δ1(Initial, login) = Login Dialog

δ2(Login Dialog, cancel) = Failed
δ3(Login Dialog, enter) = Authentication
δ4(Authentication, accepted) = Success
δ5(Authentication, declined) = Login Dialog

• q0 = Initial
• F = {Success, Failed}

do/query

Login Dialog

login()

Authentication

enter(name,password)

[accepted]

[declined]

cancel()

Initial

Success

Failed

Sequence of inputs login, enter, accepted is
correct as well as login, enter, declined,
cancel. Not acceptable is login, enter,
cancel.

Key Issues
• Formal methods reduce number of errors in software but the

mathematical representation requires more time to market
software product.

• Formal methods are hard to scale up to large systems.
• The main area of their applicability is critical systems. In this

area the use of formal methods seems to be cost-effective.
• The idea is to combine formal methods with diagrammatic

languages like UML. The formal methods specify what
cannot be captured by diagrams.

MDA – Model Driven Architecture

• The software development process is driven by the activity of modeling of
software system.

• The MDA process is divided into three steps:
• Build a model with high level of abstraction that is independent of

any implementation technology (Platform Independent Model – PIM)
• Transform the PIM into one or more model tailored for

implementation constructs specific to actual implemenation
technology (Platform Specific Model – PSM)

• Transform the PSMs to code.
• Key requirement: automation of transformations. Models have to be

precise and unambiguous.

MDA is a framework that defines how models defined in
one language can be transformed into models in other
languages.

UML Limitations
• UML modeling is based on producing diagrams. The

information conveyed by such a model has a tendency to be
incomplete, imprecise and even inconsistent.

• Diagrams cannot express the statements that should be part
of a specification.

• Interpretation of model can be unambiguous.

UML Limitations: Example

+discount(in percentage : int) : float

-name : string
-price : float

Product

+pay(in amount : float)

-name : string

-address : string

-e-mail : string

Customer

-sum : float

-date : Date

Payment

-products

0..*

-buyer

0..1

3 orders

-items1..*

-payment

0..1

defines4 -remittance

0..1

-payer 1

3 pays

Correct Intepretation of Model

name : string = Ivo Vondrak

address : string = Ostrava
e-mail : string = ivo.vondrak@vsb.cz

vondrak : Customername : string = Sony Ericsson T630

price : float = 100

vondrak'sT630 : Product

name : string = ICT25

price : float = 15

vondrak'sCase : Product

sum : float = 115
date : Date = 12/24/2004

vondrak's : Payment

Mistaken Interpretation

name : string = John Smith
address : string = Los Angeles

e-mail : string = john.smith@matrix.com

smith : Customer

name : string = Sony Ericsson T630

price : float = 100

vondrak'sT630 : Product

name : string = ICT25

price : float = 15

vondrak'sCase : Product

sum : float = 200

date : Date = 12/24/2003

vondrak's : Payment

name : string = Ivo Vondrak

address : string = Ostrava

e-mail : string = ivo.vondrak@vsb.cz

vondrak : Customer

name : string = Sony Ericsson P 900

price : float = 200

smith'sP900 : Product

Object vondrak should pay his products and the amount that has to be paid is
given by the sum of both product. This intepreation is not valid but it is correct
from point of view of class diagram. Class diagram is unambiguous!

OCL – Object Constraint Language

• OCL is precise, unambiguous language that is easy for people who are not
mathematicians or computer scientists to understand. It does not use any
mathematical symbols, while maintaining rigor in its definition.

• OCL is a typed language, because it must be possible to check an
expression included in a specification without having to produce an
executable version of the model.

• OCL is a declarative, side-effects-free language; that is, the state of a
system does not change because of an OCL expression.

• UML/OCL enables to build models completely platform-independent.

OCL is a language that can express additional and
neccessary information about models and other artifacts
used in object-oriented modeling, and should be used in
conjuction with UML diagrammatic models.

How to Combine UML and OCL
• Rules related to the class diagram of e-shop:

• A payment is valid only when the products ordered by a
customer are paid by the same customer.

• The e-mail address has to be unique.
• The payment sum is given by the sum of all ordered products’

prices.
• Customer has to pay amount of money equal to the payment

sum.

OCL Expressions

• context Payment
inv: self.items->forAll (item | item.buyer = payer)

• context Customer
inv: Customer::allInstances()->isUnique(e-mail)

• context Payment
inv: self.items.price->sum() = self.sum

• context Customer::pay(amount: float)
pre: self.remittance.sum = amount

+discount(in percentage : int) : float

-name : string
-price : float

Product

+pay(in amount : float)

-name : string

-address : string

-e-mail : string

Customer

-sum : float

-date : Date

Payment

-products

0..*

-buyer

0..1

3 orders

-items1..*

-payment

0..1

defines4 -remittance

0..1

-payer 1

3 pays

Invariants

• Invariants on attributes
context Product
inv ofPrice: price >= 0

• Invariants on associated objects
context Payment
inv ofAge: payer.age >= 18

An invariant is a constraint that should be true for
object during its complete lifetime.

Working with Collections of Objects
• When the multiplicity of an association is greater than 1, OCL

provides wide range of collection operations:
• The size operation
context Payment
inv minItems: items->size() >= 1

• The forAll operation
context Payment
inv noPayment: items.forAll(price = 0) implies sum = 0

• Other oprations: select, isEmpty, collect …

Preconditions and Postconditions

context Product::discount(percentage: Integer) : Real
pre: percentage >= 0 and percentage <= 10
post:
	 let oldPrice : Real = self.price@pre
	 in self.price = oldPrice – (oldPrice*percentage/100)
	 and result = self.price

Preconditions and postconditions are constraints that
specify the applicability and effect of an operation
without stating an algorithm or implementation.

Exerices
• What is definition of Invariant?
• Specify the invariant for class Customer that reflects

following constraint: Customer’s payment contains all
products that were ordered by the customer.

Design Patterns
• The design pattern concept can be viewed as an abstraction

of imitating useful parts of other software products.
• The design pattern is description of communicating

objects and classes that are customized to solve a general
design problem in a particular context.

Classification of Design Patterns
• Creational patterns defer some part of object creation to a

subclass or another object.
• Structural patterns composes classes or objects.
• Behavioral patterns describe algorithms or cooperation of

objects.

Creational Design Patterns
• Factory Method define an interface for creating an object, but

let subclasses decide which class to instantiate.
• Factory provides an interface for creating families of related

objects without specifying their concrete classes.
• Prototype specifies the kinds of objects to create using a

prototypical instance, and create new objects by copying this
prototype.

Factory Method Example

+newDocument()
+createDocument() : Document

Application

1 *

+open()

+close()

+save()

Document

PDFDocument WordDocument

+createDocument() : Document

WordApplication

+createDocument() : Document

PDFApplication

«instantiate»

«instantiate»

return new WordDocument

Document d = self.createDocument()

Factory Method define an interface for creating an
object, but let subclasses decide which class to
instantiate.

Factory Method Design Pattern

+factoryMethod()

+anOperation()

Creator Product

ConcreteProduct

+factoryMethod() : Product

ConcreteCreator «instantiate»

...
p = factoryMethod()

...

return new ConcreteProduct()

Factory Example

+createWindow() : Window

+createScrollBar() : ScrollBar

WidgetFactory
Window

MSWindow MotifWindow

ScrollBar

MSScrollBar MotifScrollBar

+createWindow() : Window
+createScrollBar() : ScrollBar

MotifWidgetFactory

+createWindow() : Window
+createScrollBar() : ScrollBar

MSWidgetFactory

«instantiate»

«instantiate»

«instantiate»

«instantiate»

Client1

1

1

*

1

*

Factory provides an interface for creating
families of related objects without specifying their
concrete classes.

Factory Design Pattern

+createProductA() : AbstractProductA

+createProductB() : AbstractProductB

AbstractFactory
AbstractProductA

ProductA1 ProductA2

AbstractProductB

ProductB1 ProductB2

+createProductA() : AbstractProductA
+createProductB() : AbstractProductB

ConcreteFactory2

+createProductA() : AbstractProductA
+createProductB() : AbstractProductB

ConcreteFactory1

«instantiate»

«instantiate»

«instantiate»

«instantiate»

Client1

1

1

*

1

*

Prototype Example

+insert()

Tool

+draw(in position)

+clone() : Graphic

Graphic

+draw(in position)
+clone() : Graphic

Rectangle

+draw(in position)
+clone() : Graphic

Circle

1

-prototype

1

g = prototype.clone()
while (user drags mouse) {

 g.draw(new position);

}

insert symbol into drawing;

return copy of self return copy of self

Prototype specifies the kinds of objects to create
using a prototypical instance, and create new objects
by copying this prototype.

Prototype Design Pattern

+operace()

Client

+clone() : Prototype

Prototype

+clone() : Prototype

ConcretePrototype1

+clone() : Prototype

ConcretePrototype2

1

-prototype

1

p = prototype.clone()

return copy of self return copy of self

Structural Design Patterns
• Composite composes objects into tree structures to

represent part-whole hierarchies. Composite lets client treat
individual objects and compositions of objects uniformly.

• Adapter converts the interface of a class into another
interface clients expect. Adapter lets classes work together
that couldn’t otherwise because of incompatible interfaces.

• Decorator attach additional responsibilities to an object
dynamically. Decorators provide a flexible alternative to
subclassing for extending functionality.

• Proxy provides a surrogate or representative for another
object to control access to it.

Composite Example
Client

+add(in g : Graphic)

+remove(in g : Graphic)

+getChild(in index : int) : Graphic
+draw()

Graphic

+draw()

Rectangle

+draw()

Circle

+add(in g : Graphic)

+remove(in g : Graphic)

+getChild(in index : int) : Graphic

+draw()

Drawing

1

-component

*

1 1

for (all graphics in picture)

 component.draw()

Composite composes objects into tree structures to represent part-whole
hierarchies. Composite lets client treat individual objects and compositions of
objects uniformly.

Composite Design Pattern
Client

+add(in c : Component)

+remove(in c : Component)

+getChild(in index : int) : Component
+operation()

Component

+operation()

Leaf

+add(in g : Component)

+remove(in g : Component)

+getChild(in index : int) : Component

+operation()

Composite

1

-component

*

1 1

for (all components)

 component.operation()

Adapter Example
DrawingEditor

+getBoundingBox() : Rectangle

Shape

+getBoundingBox() : Rectangle

LineShape

+getBoundingBox() : Rectangle

TextShape

+getExtent() : Rectangle

TextView

1 *

1

-text

1

return text.getExtent()

Adapter converts the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn’t otherwise because of
incompatible interfaces.

Adapter Design Pattern

Client

+request()

Target

+request()

Adapter

+specificRequest()

Adaptee

1 1

1

-text

1

adaptee.specificRequest()

Decorator Example

+draw()

VisualComponent

+draw()

TextView

+draw()

-

Decorator

+draw()

+drawBorder()

BorderDecorator

+draw()

+scrollTo()

ScrollDecorator

1

-component

1

component.draw()

super.draw()

scrollTo()

super.draw()

drawBorder()

component

aBorderDecorator

component

aScrollDecorator

aTextView

Decorator attach additional responsibilities to an object dynamically.
Decorators provide a flexible alternative to subclassing for extending
functionality.

Decorator Design Pattern

+operation()

Component

+operation()

ConcreteComponent

+operation()

-

Decorator

+operation()

+addedOperation1()

ConcreteDecorator1

+operation()

+addedOperation2()

ConcreteDecorator2

1

-component

1

component.operation()

super.operation()

addedOperation2()

Proxy Example

DocumentEditor

+draw()

+getExtent()

Element

+draw()

+getExtent()

-extent

-content

Text

+draw()

+getExtent()

-imageImp

Image

+draw()

+getExtent()

+load()

-fileName

-extent

ImageProxy

1 *

-image

1 1

if (image == null)

 image = load(fileName)
image.draw()

if (image == null)

 return extent

else

 return image.getExtent()

Proxy provides a surrogate or representative for another object to control
access to it.

Proxy Design Pattern

Client

+request()

Subject

+request()

RealSubject

+request()

Proxy

1 *

-real

1 1

real.request()

Behavioral Design Patterns
• Chain of Responsibility avoids coupling the senders of a request to its receiver

by giving more than one object a chance to handle request. Chain the receiving
objects and pass the request along the chain until an object handles it.

• Command encapsulates a request as an object, thereby letting you parametrize
clients with different requests, queue or log requests, and support undoable
operations.

• Iterator provides a way to access the elements of an aggregate object sequentially
without exposing its underlying representation.

• Observer defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

• State allows an object to alter its behaviour when its internal state changes. The
object will appear to change its class.

• Strategy defines a family of algorithms, encapsulates each one, and makes them
interchangable. Strategy lets algorithm vary independently from clients that use it.

Chain of Responsibility Example
Client

+handleHelp()

HelpHandler

+handleHelp()

+showHelp()

Application
Widget

+handleHelp()
+showHelp()

Dialog

+handleHelp()

+showHelp()

Button

1 1 1

-handler1

handler.handleHelp()

if (can handle)

 showHelp()

else

 super.handleHelp()

handler

aClient

handler

aButton

handler

aDialog

handler

anApplication

Chain of Responsibility avoids coupling the senders of a request to its receiver by giving more than one
object a chance to handle request. Chain the receiving objects and pass the request along the chain until
an object handles it.

Chain of Responsibility Design Pattern

Client

+handleRequest()

Handler

+handleRequest()

ConcreteHandler1

+handleRequest()

ConcreteHandler2

1 1 1

-successor1

successor .handleRequest()

Command Example

+add(in doc : Document)

Application

+open()

+close()

+cut()

+copy()
+paste()

Document

+add(in m : MenuItem)

Menu

+clicked()

MenuItem

+execute()

Command

1 * 1 * 1

-command

1

+execute()

PasteCommand

1

* +execute()

+askUser () : string

AddCommand-document

1 1

1

-application 1
command.execute()

document.paste()

name = askUser ()

doc = new Document(name)

application.add(doc)

doc.open()

Command encapsulates a request as an object, thereby letting you
parametrize clients with different requests, queue or log requests, and support
undoable operations.

Command Desing Pattern

Client

+action()

Receiver

Invoker

+execute()

Command

1

-command

1

+execute()

ConcreteCommand

1

1

-receiver

1 1

receiver.action()

«instantiate»

Iterator Example

+createIterator() : Iterator

Collection Client

+first()

+next()

+isDone()

Iterator

+createIterator() : Iterator
+append()

+remove()

+get(in index)

List

+createIterator() : Iterator

+pop()
+push()

+top()

Stack

+first()

+next()

+isDone()

StackIterator

+first()

+next()

+isDone()

ListIterator

1 1 1 1

1 1

«instantiate»

1

1

«instantiate»

Iterator provides a way to access the elements of an aggregate object
sequentially without exposing its underlying representation.

Iterator Design Pattern

+createIterator() : Iterator

Aggregate Client

+first()

+next()

+isDone()

Iterator

+createIterator() : Iterator

ConcreteAggregate

+first()

+next()

+isDone()

ConcreteIterator

1 1 1 1

1 1

«instantiate»

Observer Example

+attach(in o : Observer)
+detach(in o : Observer)

+notify()

Subject

+update()

Observer

1 -observer*

-subject

1 1

+getData() : float

-data[] : float

StockMarket

+update()

+print(in data[])

TextArea

+update()

+draw(in data[])

BarChart

for all observers

 observer.update()

data = subject.getData()

print(data)

data = subject.getData()
draw(data)

Observer defines a one-to-many dependency between objects so that when one
object changes state, all its dependents are notified and updated automatically.

Observer Design Pattern

+attach(in o : Observer)
+detach(in o : Observer)

+notify()

Subject

+update()

Observer

1 -observer*

-subject

1 1

+getState()

ConcreteSubject

+update()

ConcreteObserver

for all observers

 observer.update()

subject.getState()

State Example

+open()

+close()

+acknowledge()

TCPConnection

+open()

+close()
+acknowledge()

TCPState

+open()

+close()

+acknowledge()

TCPEstablished

+open()

+close()

+acknowledge()

TCPListen

+open()

+close()

+acknowledge()

TCPClosed

1

-state

1

state.open()

State allows an object to alter its behaviour when its internal state changes. The
object will appear to change its class.

State Design Pattern

+request()

Context

+handle()

State

+handle()

ConcreteState1

+handle()

ConcreteState2

1

-state

1

state.handle()

Strategy Example

+format()

Document

+align()

Alignment

+align()

Left

+align()

Center

+align()

Justify

1

-alignment

1

alignment.align()

Strategy defines a family of algorithms, encapsulates each one, and makes them
interchangable. Strategy lets algorithm vary independently from clients that use it.

Strategy Design Pattern

+execute()

Context

+algorithm()

Strategy

+algorithm()

ConcreteStrategy1

+algorithm()

ConcreteStrategy2

1

-strategy

1

strategy.algorithm()

Exercises
• Let‘s assume that we have the class Application. Use design

pattern Prototype to add new documents WordDocument
and PDFDocument to the application.

• Specify simple file system that employs design pattern
Composite.

• We have a class Table that consists of n instances of class
Record. The class Recors defines three attributes name, age
and sallary. The class Table defines operation sort that sorts
records based on name, age or sallary. Employ design
pattern Strategy for that purpose.

