
Methods for Business Modeling

Prof. Ing. Ivo Vondrak, CSc.
Dept. of Computer Science

Technical University of Ostrava
ivo.vondrak@vsb.cz

http://vondrak.cs.vsb.cz

mailto:ivo.vondrak@vsb.cz
http://vondrak.cs.vsb.cz/

References
1. Mayer, R.J., Painter, M.: IDEF Family of Methods, Technical Report, Knowledge

Based Systems, Inc., College Station, TX, 1991
2. Booch, G., Jacobson, I., Rumbaugh, J.: The Unified Modeling Language User

Guide, Addison Wesley Longman, Inc., 1999
3. Schmuller, J.: Teaching Yourself UML in 24 Hours, Sams, 1999
4. Vondrak, I., Szturc, R., Kruzel, M.: Company Driven by Process Models, European

Concurrent Engineering Conference ECEC ’99, SCS, Erlangen-Nuremberg,
Germany, pp. 188-193, 1999

5. Wil van der Aalst. Formalization and Verification of Event-driven Process Chains.
Information and Software Technology, 41(10):639-650, 1999.

6. Wil van der Aalst. Workflow Verification: Finding Control-Flow Errors using Petri-
net-based Techniques. In Business Process Management: Models, Techniques,
and Empirical Studies, volume 1806 of Lecture Notes in Computer Science, pages
161-183. Springer-Verlag, Berlin, 2000.

7. Wil van der Aalst, Kees van Hee: Worklflow Management, Models, Methods, and
Systems. MIT Press, 2002

8. Češka, M.: Petriho sítě, Akademické nakladatelství CERM Brno, 1994

Contents
• Introduction
• Approaches to business modeling
• Formal methods for specification and analysis
• Software Tools
• Conclusions

About Methods for Business Modeling
• Method is well-considered (sophisticated) system of doing or arranging

something.
• Business Process is a set of one or more linked procedures or activities which

collectively realize a business objective or policy goal, normally within the
context of an organizational structure defining functional roles and relationships.

• Business Process Model is the representation of a business process in a form
which supports automated manipulation, such as modeling or enactment. The
process definition consists of a network of activities and their relationships,
criteria to indicate the start and termination of the process, and information about
the individual activities, such as participants, associated data, etc.

• Workflow is the automation of a business process, in whole or part, during
which documents, information or tasks are passed from one participant to
another for action, according to a set of procedural rules.

Methods for business modeling represent systematic
way how to specify and analyze business processes.

Source: Workflow Management Coalition

Purpose of Business Modeling
• Business Process Re-engineering (BPR) - methods that

support activities by which an enterprise reexamines its goals
and how it achieves them, followed by a disciplined approach
of business process redesign.

• Enterprise Resource Planning (ERP) - an information
system that integrates all manufacturing and related
applications for an entire enterprise. Business modeling is the
first step in the software process of the ERP implemenation.

• Workflow Management (WFM) – generic software systems
used for definition, management, enactment and control of
business processes.

Ontology of Process Engineering

via

are mapped on

include one or more

is defined in a

during execution are
represented bydefine demand on

require

used to create
and manage

Business Process
(i.e. what is inteded to happen)

Process Specification
(a representation of what is

intended to happen)

Workflow Management System
(controls automated aspects of the business process)

Activities

Subprocesses

Process Instances
(a representation of what is

actually happening)

Roles

Activity Instances

Resources

is managed by a

composed of

Approaches to Business Modeling
• Abstract framework to business process specification
• Functional specification based on IDEF
• Process specification using EPC
• Object-oriented approach to structural modeling
• Using UML for business modeling
• Meta-model of business process

Abstract Framework

Implementation

Beginning

What?
Goals and functions

How?
Activities and processes

By whom and what?
Entities and resources

Generic steps how to
design business process

Three Fundamental Abstractions
• Functional View. The functional view is focused on activities

as well as on entities that flow into and out of these activities.
That means how the input is transformed to the required
output.

• Behavioral View. The behavioral view is focused on when
and/or under what conditions activities are performed. The
behavioral view captures the control aspect of the process
model.

• Structural View. The structural view is focused on the static
aspect of the process. It captures objects that are
manipulated and used by a process as well as the
relationships that exist among them.

Consider order

Accept?

Check
availability

Reject order

Available?

Make production

plan

Purchase material

Produce articles

Ship articles

Send bill

Check payment

End

Paid?

End

Yes No

No

Yes

Yes

No

Start

Order Processing
(Flow Chart)

Begining of
the process

Decision
block

Activity

End of the
process

Integration DEFinition
• IDEF (Integration DEFinition language) is a software

methodology and diagramming system developed by the US
Department of Defense.

• IDEF is used to produce a "function model". A function
model is a structured representation of the functions, activities
or processes within the modeled system or subject area.

• IDEF is based on SADT (Structured Analysis and Design
Technique), developed by Douglas T. Ross and SofTech, Inc.
In its original form, IDEF0 includes both a definition of a
graphical modeling language (syntax and semantics) and a
description of a comprehensive methodology for developing
models.

IDEF Languages
• IDEF0 is used to produce a "function model". A function

model is a structured representation of the functions, activities
or processes within the modeled system or subject area.

• IDEF1 is used to produce information model that specifies
structure and semantics of data.

• IDEF2 is used to model dynamic aspects of the system, i.e. its
behaviour.

• IDEFx other extensions (http://www.idef.com).

http://www.idef.com/

Basic Concepts of IDEF0
• As an analysis tool, IDEF0 assists the modeler in identifying

the functions performed and what is needed to perform them.
• The IDEF0 model diagram is based on a simple syntax. Each

activity is described by a verb based label placed in a box.
Inputs are shown as arrows entering the left side of the
activity box while the outputs are shown as exiting arrows on
the right side of the box. Controls are displayed as arrows
entering the top of the box and mechanisms are displayed as
arrows entering from the bottom of the box. Inputs, Controls,
Outputs, and Mechanisms (ICOMs) are all referred to as
concepts.

Basic IDEF0 Syntax

A0

Activity
Input Output

Control

Mechanism

Data or objects that are
going to be transformed
by a function (activity) to
the output.

Sources needed for
execution of the function.

Rules needed to
produce required
output.

Data or objects produced
by the function.

Identification of the
function in the function
hierarchy.

Hierarchy of Functions
• Each model shall have a

top-level context diagram,
on which the subject of the
model is represented by a
single box with its
bounding arrows. This is
called the A-0 diagram.

• Every diagram but the
context has from 3 to 6
functions.

• ICOMs may be
interconnected.

4

3

2

1

3

3

2

1

2

1

A0

A4

A42

A-0

A4

A42

A0
0

A-0

A0

Order

ProcessingOrder

Product

assortment

Shipped articles

Sales

TITLE:NODE: NO.:A-0 Order Processing

Manufacture

Context Diagram: Order Processing

Input

Control

Mechanism

Function
(Activity)

Output

Function ID

Identification of
child diagram

A0: Order Processing

1

Order

Consideration

2

Checking of

Articles

availability

3

A3

Production

4

Articles

Shipment

5

A5

Invoicing

Order

Product

assortment

Order rejected

Accepted order

Accepted Order

Product specification

Material

Product

Product

Articles

In stockl

Shipped Articles

Bill of sale

Sales

Manufacture

Dispatch

Department

Accounting

Department

Order closed

TITLE:NODE: NO.:A0 Order Processing

A3: Production

TITLE:NODE: NO.:A3 Production

2

Making of

Production Plan

1

Material

Purchase

3

Manufacturing

Product specification

Funding

Material

Production plan

Sales

Manufacture

Product

IDEF0 Pros and Cons
• Positive aspects

• Methods is well formalized. The syntax and semantics is well defined.
• Function specification enables to analyze even complex processes.
• Methods is standardized by National Institute of Standards and

Technology (USA).
• Negative aspects

• IDEF0 is focused on functions and their decomposition. The time
ordering is not explicitly expressed.

• Complete specification of the process requires to employ other
methods like IDEF1, IDEF2 ... This issue makes resulting
specification too complex.

Exercise 1
• Create IDEF0 diagram for function Invoicing. Assume that

this function consists only from two other functions: Invoice
sending and Payment checking.

Process Specification Using EPC
• Event-driven Process Chains (EPC) are based on connecting

events and action to the sequences which collectively realize
a business objective.

• Event is the precondition for the activity. New event
(postcondition) is generated when the activity is finished. It
means that events defines the beginning and end of each
activity.

• EPC diagrams are used in SAP R/3 (ERP/WFM) and ARIS
(BPR).

EPC Diagram Elements
• Activities are the basic building blocks that define what

should be completed within the process execution.
• Events specify situations before and/or after the activity is

executed. It means that event may represent an output
condition of the one activity and an input condition for the
other activity at the same time.

• Connectors are used to link together activities and events.
This is a way how the flow of control is defined. EPC uses the
following three types of connectors: ∧ (AND), ∨ (OR) and
XOR (exclusive OR).

Semantics of Connectors
• AND is used either for splitting of the process to at least two

concurrent process threads of execution or joining of
concurrent threads to the one (synchronization point).

• XOR splits the process to just one optional thread of many
possible ones.

• OR is used to split process to one, second or both possible
threads of execution.

Order

received

Consider

order

XOR

Order

rejected

Order

accepted

Check

availability

XOR

Articles

available

Articles must

be produced

V

Purchase

material

Make

production

plan

Material

available

Plan

available

V

Produce

articles

Articles

produced

XOR

Ship order

Order shipped

Send bill

Outstanding

accounts

XOR

Check

payment

XOR

Order

completed

EPC:
Order Processing

Event

Activity

XOR-split

XOR-join

AND-split

AND-join

Structured EPC
• Complex processes have to include subrocesses –

hierarchical decomposition.
• Process paths represent the interface of the given process to

another one (reference to another process).

Structured EPC:
Order Processing

Subprocess

Process path

Order

received

Consider

order

XOR

Order

rejected

Order

accepted

Check

availability

XOR

Articles

available

Aricles must

be produced

Production

Articles
produced

XOR

Ship order

Order shipped

Invoicing

Extended EPC (eEPC)
• Additional information is expressed in a process model

• Organizational units responsible for activity execution
• Information sources and material
• ...

Order

received

Consider

order

XOR

Order

rejected

Order

accepted

Check

availability

XOR

Articles

available

Aricles must

be produced

Production

Articles
produced

XOR

Ship order

Order shipped

Invoicing

Sales

Sales

Dispatch

Department

Stock

Database

Enterprise

Resource

Planning

Manufacture

eEPC:
Order Processing

Organizational
unit

Information
sources

EPC Pros and Cons
• Positive aspects

• Method provides simple but powerful abstraction based on
chaining of event and activities that enables to model complex
processes.

• EPC is a part of widely accepted system like SAP and ARIS
• Negative aspects

• Language for EPC diagrams is not formally defines. Syntax
and semantics is not precise enough (e.g. OR has no obvious
semantics assigned).

• Missing formalism complicates portability of EPC between
various software tools.

Production

must be

started

Make

production

plan

Plan available

V

Produce

articles

Articles

produced

Order

received

Order

accepted

V

XOR

Invoicing
started

Pay deposit

Deposit payed

V

V

Send final bill

Payment

realized

Ship order

Order
completed

Cash payment
started

Pay cash

Cash payed

XOR

XOR

Outstanding

accounts

Check

payment

XOR

V

Faulty Process?

Process deadlock

Exercise 2
• Create Production subprocess with the respect to the

following rules:
• All needed material has to be purchased or only some material

has to be purchased or in case that all material is in the stock
no purchase is done.

• Concurrently with potential material purchase the production
plan is made.

• Articles production can be started only in case that material
and production plan are both available.

OO Approach to Structural Modeling
• Object is an entity with a well-defined boundary and identity

that encapsulates state and behavior.
• Class is a description of a set of objects that share the same

attributes, operations, methods, relationships, and semantics.
• Object-oriented system architecture is the structure of

connected objects that define resulting behavior of the system
through their communication (interactions).

Object Model
• Structural model of the business process is specified by class

diagram that consists of the following elements:
• Classes representing active (Workers) and passive (Entities)

objects.
• Relationships among these classes that enable

communication among their instances (objects).

Types of Relationships
• Association describes a group of links with common

structure and common semantics (a Person works-for a
Company). An association a bi-directional connection between classes
that describes a set of potential links in the same way that a class
describes a set of potential objects.

• Aggregation is the “part-whole” or “a-part-of” relationship
in which objects representing the components of something
are associated with an object representing the entire assembly.

• Generalization is the taxonomic relationship between a more general
element (the parent) and a more specific element (the child) that is fully
consistent with the first element and that adds additional information.

«worker»

Accounting Department

-amount

-due date
-bank

«entity»

Invoice

-article type

-amount
-price

«entity»

Order
«entity»

Article

«worker»

Organizational unit

«worker»

Manufacture

«worker»

Dispatch Department

«worker»

Sales

«worker»

Company
1 *

1

*

processes

1 1

specifies

1

-product0..*

produces 1

-delivery

1..*

ships

1

*

draws
1

*

checks payment

1

1

defines

Object Model: Order Processing
Class specifying
active object

Class specifying
passive object

Aggregation Generalization

Association Role of
object

Multiplicity

Exercise 3
• Create class diagram defined by classes Sales, Manufacture,

Product and Material. Describe the situation where Sales
purchases Material that is required by Product to be
produced. Manufacture produces the Product and uses the
Material for this purpose.

Using UML for Business Modeling
• The Unified Modeling Language (UML) is a standard

language used to visualize, specify, construct and
document the artifacts of a system.

• UML uses the following three diagram for purpose of business
modeling:
• Use case diagrams to specify functions of the system being

modeled.
• Activity diagrams to capture behavioral (control) aspect of

business processes.
• Class diagrams to specify structural properties of the system.

Functional View of the System
• Use case is the specification of a sequence of actions,

including variants, that a system (or other entity) can perform,
interacting with actors of the system.
• Use case diagram shows the relationships among actors and

use cases within a system.
• Actor is coherent set of roles that users of use cases play

when interacting with these use cases. An actor has one role
for each use case with which it communicates.

Order Processing

Customer

Production

«extends»

Invoicing

«uses»

Supplier

Use Case: Order Processing

Use case Order
Processing

Actor

Uses relationship specifies how
the behavior for the base use case
contains the behavior of the
inclusion use case.

Extends relationship specifies how the
behavior defined for the extension use
case extends the behavior defined for the
base use case.

Control Flow
• Activity Diagram is a variation of a state machine in which

the states represent the performance of activities and the
transitions are triggered by their completion.

• The purpose of this diagram is to focus on flows driven by
internal processing.

Consider

order

[Order rejected]

Check articles

availability

[Order accepted]

[Articles must be produced]

Purchase material Make production plan

Producte articles

Ship articles

[Aricles available]

Send bill

Check payment

[Not paid]

[Paid]

Activity Diagram: Order Processing
Initial
State

Final
State

Action State
(Activity)

Decision

Control
Flow

Join Transition

Fork Transition

Guard Condition

Subprocess

Accounting DepartmentDispatch DepartmentManufactureSales

Consider
order

[Order rejected]

Check articles

availability

[Order accepted]

[Articles must be produced]

Purchase material Make production plan

Produce articles

Ship articles

[Articles available]

Send bill

Check payment

[Not paid]

[Paid]

Responsibilities
(Swimlanes)

Dispatch DepartmentSales Accounting DepartmentManufacture

Consider

order

Check articles

availability

[Articles must be produced]

Purchase material Make production plan

Produce articles

Ship articles

Send bill

Check payment

[Not paid]

Order

[received]

Order

[rejected]

Order

[accepted]

Articles
[available]

Articles
[produced]

Articles

[shipped]

Invoice

[sent]

Invoice

[paid]

Flow of
Objects

Object in a
given state

Data
Flow

UML Pros and Cons
• Positive aspects

• UML provides a large number of diagrams enabling to capture
every aspects of the system being modeled.

• The notation of UML is standardized and it is used by many
software tools dedicated to software system design.

• Since the primary focus of UML is to write software system
blueprints it easy and straightforward to interconnect business
modeling with the specification of information system.

• Negative aspects
• UML is considered as a semi-formal method. The semantics

is not precisely defined. It might be a problem to verify
complex processes.

Exercise 4

• Define activity diagram for accounting department. Accountant
issues the invoice and then he/she sends it to customer. In
case that the total amount is higher than 5000 USD the
invoice has to be authorized by a manager before it is sent.

Meta-Model Specification
• Meta-model is a model that defines the language for

expressing a model.
• Business meta-model is a model for all above mentioned

modeling approaches.

Business Process Meta-Model

«metaclass»
Process

«metaclass»

Process step

«metaclass»

Activity

1

0..*

is coordinated with

«metaclass»

Role

*

*

is executed by

«metaclass»

Competency

*

*

specifies

«metaclass»

Resource
* *

provides

«metaclass»

Human

«metaclass»

Machine

*

*

plays

1

*

«metaclass»

Entity

«metaclass»

Information

«entity»

Material

«metaclass»

Object

*

*

is processed within

*

*

uses

* *

is processed by

*

1

collaborates with

«metaclass»

Properties
* 1

3 has

«metaclass»

Goal
* 1

is realized by

1

*

is organized with

Standards in BPM
• Specification language BPMN (Business Process Modeling

Notation)
• BPMN creates a standardized bridge for the gap between the

business process design and process implementation.
• BPMN defines a Business Process Diagram (BPD), which is

based on a flowcharting technique tailored for creating
graphical models of business process operations.

• Executable Languages: BPML (Business Process Modeling
Language) and BPEL (Business Process Execution
Language)
• BPMN is supported with an internal model that enables the

generation of executable BPEL.

Formal Methods
• Formal methods for specification and analysis
• Pi-calculus Overview
• Petri Nets and their properties
• Modeling processes by WF-Nets
• Analysis of business processes
• Fomalization and verification of informally specified processes

Formal Methods for Specification and Analysis

• Formal methods include
• Formal specification
• Specification analysis and proof
• Transformational development
• Process verification

• Language for formal specification has to have precise and
unambiguous syntax and semantics.

Techniques for the precise and unambiguous specification of
business processes.

Mathematical Representation of the Process

• Formal specifications are expressed in a mathematical
notation with precisely defined vocabulary, syntax and
semantics.

• Algebraic approach
• The system is specified in terms of its operations and their

relationships.
• Model-based approach

• The system is specified in terms of a state model that is
constructed using mathematical constructs such as sets and
sequences.

Process Algebra: Pi-calculus
• The pi-calculus is a process algebra developed by Robin Milner.
• The pi-calculus is a successor of CCS (Calculus of Communicating

Systems) language.
• The aim of the pi-calculus is to be able to describe concurrent

computations whose configuration may change during the
computation.

• The pi-calculus is a mathematical formalisms for describing and analyzing
properties of concurrent computation.

• The pi-calculus is so minimal that it does not contain primitives such as
numbers, booleans, data structures, variables, functions, or even the usual
flow control statements (such as if... then...else, while...).

Names and Processes
• The names are ubiquitous in the language. They roughly

corresponds to identifier in programming languages, and are
generally noted in lowercase (order, customer ...).
• Names are the only data values available in pure Pi-calcullus
• Some names are used to transport other names – channels

• Processes represent the basic building blocks to describe
behavior.

• Process expressions can be arranged either sequentially
(using a simple dot .) or concurrently (using verical bar |).

• The Pi-calculus uses sum operator (+) to model
nondeterministic choice.

Basic Communication
• There are two basic output and input actions:

• Output action (emission) c!x means send value x on channel c
• Input action (reception) c?(x) means receive a value on channel c, binding that

value to the name x (bound name)
• Communicating processes:

• Let‘s have two concurrent processes separated by verical bar |:

c!hello . d?(x) | c?(y) . d!y

The process on left is a sequence of two actions – the first one c!hello sends
value hello along the channel c. A reception on c follows. The emission on the
left is said to be prefix and what follows is a continuation of the process. The
process on the right first listens on channel c and then reemits the same
information (using the bounds name y) on the channel d (echoing process).

• Synchronization is based on the rule that both an emission prefix and a
reception prefix must be matched to exchange the information:

c!hello . d?(x) | c?(y) . d!y → d?(x) | d!hello

means one step execution of the process (reduction). First the bound name y
has been substituted by the name hello and then both prefixes disappeared (they
were executed).

Process Abstraction
• Construct called abstraction allows to name behavior definitions. It is possible to use

this name within process expression to model calls and recursion. This is the analogy
to function definitions and functions calls in other programming languages:

Sink(c) = c?(x) . Sink(c)

means that process Sink(c) consumes all values transmitted to it on channel c. Here c
is a bound name in a function definition that will be instantiated to an explicit channel for
each actual use of the function.

Source(d) = (d!hello . d!world . Source(d)) + (d!hi . d!all . Source(d))

produces infinite sequence of pairs hello world and hi all. Both pairs can interleave
arbitrarily because choise is nondeterministic.

• Restriction operator (new c) P creates a new and unique name c local to a process
expression P:

(new com) Source(com) | Sink(com)

runs forever, transmitting a sequence of pairs hello world and hi all on channel com.
Every hello is followed by world as well as hi is followed by all.

Syntax of Pi-calculus
Prefixes α ::= a!x Output action (emission)

a?(x) Input action (reception)

Processes P ::= 0 Nil – no action is performed

α.P Prefix

P + P Choice

P | P Parallel

(new x) P Restriction
A(y1, ..., yn) Identifier

Definitions A(x1, ..., xn) = P

Definition can be thought of as a process
declaration, x1, ..., xn as formal parameters, and
the identifier A(y1, ..., yn) as an invocation with
actual parameters y1, ..., yn.

Example: Order Processing
• Definitions:

Purchase(customer,order) = customer!order . customer?(bank, bill) . bank!bill
// Send order along a customer channel, wait for bank where to pay bill and pay a bill

Sale(client) = client?(specification) . client!<swissbank,invoice>
// Wait for specification from client and send him/her invoice and bank connection

• Execution
 (new steve, bmw)
 Purchase(steve, bmw) | Sale(steve)

steve!bmw . steve?(bank,bill) . bank!bill | steve?(specification) . steve!<swissbank,invoice>
→
steve!bmw . steve?(bank,bill) . bank!bill | steve?(bmw) . steve!<swissbank,invoice>
→
steve?(bank,bill) . bank!bill | steve!<swissbank,invoice>
→
steve?(swissbank,invoice).swissbank!invoice | steve!<swissbank,invoice>
→
swissbank!invoice | 0

• Reconfiguration of the process
 (new steve, mary, bmw, honda)
 Purchase(steve, bmw) | Purchase(john, honda) | Sale(steve) | Sale(mary)

Order Processing Revised
• Definitions:

Purchase(customer,order) = customer!order . customer?(bank,bill) . bank!bill . customer?(product)
// Send order along a customer channel, wait for bank where to pay bill, pay a bill and wait for a product

Sale(client) = client?(spec) . (spec! | (bmw? . BMW(client, spec) + honda? . Honda(client,spec))
// if spec = bmw then BMW(client, bmw) or if spec = honda then Honda(client, honda)

BMW(client,spec)
 = (production!<client,spec> . client?(car) | client!<swiss,invoice>) . swiss?(payment) . client!car
// Produce specified car , send an invoice to the client, wait for payment and then ship a car

Honda(client,spec)
 = (warehouse!<client, spec> . client?(car) | client!<nomura,invoice>) . nomura?(payment) . client!car
 // Find specified car , send an invoice to the client, wait for payment and then ship a car

Production() = production?(client, specification) . (client!car | Production())
// Wait for specification, start production for a client and continue waiting for a new specification

Warehouse() = warehouse?(client, specification) . (client!car | Warehouse())
// Wait for a specification, start searching the car for a client and continue waiting for a new specification

• Execution
 (new steve, bmw, mary, honda)
 Purchase(steve, bmw) | Purchase(mary, honda) | Sale(steve) | Sale(mary) | Production() | Warehouse()

Finite Automata
• Finite automata are defined by

• Q - finite set of states
• I - finite set of inputs
• δ: Q × I → Q - state transition function
• q0 - initial state
• F ⊆ Q - set of final states

• Visualization is based on statechart diagrams

Formal Specification of Invoice States
• Q = {Articles shipped, Issued, Authorized, Not paid, Order completed}.
• I = {drawing, authorization, sending, payment not done, payment completed}.
• δ(Articles shipped, drawing) = Issued,

δ(Issued, authorization) = Authorized,
δ(Issued, sending) = Not paid,
δ(Authorized, sending) = Not paid,
δ(Not paid, payment not done) = Not paid,
δ(Not paid, payment completed) = Order completed.

• q0 = Articles shipped.
• F = {Order completed}.

State Diagram: Invoicing
Initial state q0

Final state

State Input

Transition

Articles shipped

Issued

drawing

Authorized

authorization

Not paid

sending

sending

payment completed

payment not done

Order completed

Introduction to Petri Nets

S1 S2

e

S1 S2e

Change of state modeled
by Finite Automata

Change of state modeled
by Petri Nets

State

Transition

Place
Transition

Partial states modeled by
Petri Nets

S1
1

S1
2

S1
3

e

S2
1

S2
2

Petri Nets
• A Petri Net is a triple PN = (P, T, F):
• P is a finite set of places
• T is a finite set of transitions
• is a set of arcs (flow relation)

• A marking of a PN = (P, T, F) – denoted by M: P → N is a
mapping which assigns a non-negative integer number of
tokens to each place of the net.

• A marking M (distribution of tokens over places) is often
referred as the state of a given Petri Net.

• Notation •t is used to denote the set of input places for a
transition t. The notation t•, •p and p• have similar meanings,
that is p• is the set of transitions sharing p as an input place.

()�=∩TP

() ()PTTPF ×�×�

t1 t2

p1 p2

p3

p4

Petri Net Model of Wash-stand

Car wash
required

Paid

Wash-stand
empty

Car washed

Payment Washing

Process Simulation using Petri Net
Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Car wash

required
Payment Paid

Wash-stand

empty

Washing Car washed

Initial state: tokens are in places Car wash
required and Wash-stand empty.

Transition Payment fired. Token is removed
from the input place Car wash required.

Payment is finished. Token is put in place
Paid. Transition Washing is enabled.

Transition Washing is fired. Tokens are
removed from its input places.

Final state. Tokens are moved to Car washed
and Wash-stand empty places.

Formal Specification of Wash-stand
• Wash-stand Petri Net
• P = {p1, p2, p3, p4}.
• T = {t1, t2}.
• F = {〈p1, t1〉, 〈p2, t2〉, 〈p3, t2〉, 〈t1, p2〉, 〈t2, p3〉, 〈t2, p4〉}.

• Dynamic behavior – states reached during process execution
1. p1+p3
2. p2+p3
3. p3+p4.

Significant Properties of Petri Nets
• We use (PN, M) to denote a Petri Net PN with an initial state

M.
• For any to states M1 and M2, M1 ≤ M2 iff for all

p ∈ P: M1(p) ≤ M2 (p), where M(p) denotes the number of
tokens in place p in state M.

• Firing rule: a transition t is said to be enabled iff each input
place p of t contains at least one token.

• A state is Mn called reachable from M1 iff there is a firing
sequence that leads Petri Net from state M1 to state Mn via a
(possibly empty) set of intermediate states M2, … Mn-1.

Reachability Graph of Wash-stand
Car wash request Payment Paid

Wash-stand
empty

Washing Car washed

[2,0,1,0] [1,1,1,0] [1,0,1,1]

[0,2,1,0] [0,1,1,1]

[0,0,1,2]

Traffic Lights Petri Net

p1: Red

p2: Yellow

p3: Green

yr

rg

gy

[1,0,0] [0,0,1]

[0,1,0]

Verification of Traffic Lights
p1: Red1

p2: Yellow1

p3: Green1

yr1

rg1

gy1

yr2

rg2

gy2

p5: Red2

p6: Yellow2

p7: Green2

p4: x

[1,0,0,1,1,0,0]

[0,1,0,0,1,0,0] [1,0,0,0,0,1,0]

[0,0,1,0,1,0,0] [1,0,0,0,0,0,1]

Initial marking M0

There are no both green lights
on in the reachability graph
=> no accident can happen but
nondeterministic behavior of
Petri Net can cause that just
one traffic lights will change
their states!

Correct Model of Traffic Lights
p1: Red1

p2: Yellow1

p3: Green1

yr1

rg1

gy1

yr2

rg2

gy2

p6: Red2

p7: Yellow2

p8: green2

p4: x1 p5: x2

[1,0,0,1,0,1,0,0]

[1,0,0,0,0,0,0,1]

[1,0,0,0,0,0,1,0]

[1,0,0,0,1,1,0,0]

[0,0,1,0,0,1,0,0]

[0,1,0,0,0,1,0,0]

Liveness and Boundness
• A Petri Net (PN, M) is live iff for every reachable state M’ and

every transition t there is a state M’’ reachable from state M’
that enables t (=> every transition can fire arbitrarily many
times).

• A Petri Net (PN, M) is bounded iff for each place there is a
natural number n such that for every reachable state the
number of tokens in place p is less than n. The net is safe iff
for each place the maximum number of tokens does not
exceed 1.

Live Petri Net

Car was required Payment Paid

Wash-stand

empty

Washing Car washed

Car usage

Every transition can fire
arbitrarily many times.

Colored Petri Net:
Order Processing

Order

received

Consider

order

Order
rejected

Check
articles

availability

Articles
available?

Ship

order

Order

shipped

Send

bill

Payment

not paid

Check

payment

Order

completed

Purchase

material

Material
available

Produce
articles

Order

accepted?

t1

t1

t2

Purchase

ready

t3

t4

Payment

completed?

Empty transition
required by Petri
Net formalism.

Token carries information
needed for deterministic
execution of Petri Net.

Extended
Notation AND-split

AND-join

OR-split

preconditions

OR-join

AND/OR-split

preconditions

Notation

Petri Net
meaning

Modified Petri Net:
Order Processing

Order

received

Consider

order

Order

rejected

Check
articles

availability

Articles
available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

Purchase

material

Make

production

plan

Material
available

Plan
available

Produce
articles

Order

accepted

Begin

production

Purchase

ready

Articles

to produce

Articles must

be produced

Extended notation
makes process
model closer to
reality while all
properties of Petri
Net theory is
preserved.

Temporal Extension
Order

shipped

Send

bill

Payment
not done

Check

payment

Order

completed

7 days

In case that Check payment
was not successful token is
moved to place Payment not
done but it is consumed
again after 7 days. The
token was associated with
Time Stamp 7 days delay.

Structuring Petri Nets

Send

bill

Payment

not done

Check
payment

Order

shipped

Invoicing

Order

completed

Subprocess Invoicing is
substituted by refined Petri
Net.

Exercise 5
• Create Petri Net model of Traffic Lights where the yellow light

is on when lights are switching from red to green and back
from green to red.

Modeling Processes by WF-Nets
• A Petri net which models the control-flow dimension of a

workflow, is called a Work-Flow Net (WF-Net).
• A Petri net PN = (P; T; F) is a WF-Net if and only if:

1. There is one source place i ∈ P such that •i = ∅.
2. There is one sink place o ∈ P such that o• = ∅.
3. Every node x ∈ P ∪ T is on a path from i to o.

Workflow Structures
x y

Sequence

x

y

Implicit selection

x

Explicit selection

Concurrency

x

x

y

While-Do Loop

y

Repeat-Until Loop

x

WF-Net:
Order Processing

Start

Consider

order

Order

rejected

Check
articles

availability

Articles
available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

Purchase

material

Material
available

Produce
articles

Order

accepted

Begin

production

Purchase

ready

Articles must

be produced

End

Make

production plan

Plan

available

Articles
to produce

Close

order

Beginning of the process

End of the process

Resource initiative trigger

Time signal trigger

External event trigger

Hierarchical
Decomposition

Start

Consider

order

Check
articles

availability

Articles
available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order

completed

Production

Order

accepted

Articles must

be produced

End

Close

order

Subprocess

Exercise 6
• Create WF-Net for the process of delivery service. Let’s have

activities Accept Order, Send Bill, Accept Payment, Ship
Order and Cancel Order. When the order is accepted the bill
is sent to customer. In case that the payment is not received
in a given time interval order is canceled. If payment is
received in time then the order is shipped to customer.

Analysis of Business Processes
• Analysis of business processes is based on analysis of

properties inherent to Petri Nets:
• reachability
• liveness
• boudness
• and others …

• For the purpose of correct design of workflow property
soudness was introduced.

Soudness
• A procedure modeled by WF-Net PN = (P, T, F) is sound if

and only if:
• For every state M reachable from state i, there exists a firing

sequence leading from state M to state o.
• State o is the only state reachable from state i with at least one

token in place o.
• There are no dead transition in (PN, i).

• The first requirement states that starting from the initial state
(state i), it is always possible to reach the state with one token
in place o (state o). The second requirement states that the
moment a token is put in place o, all the other places should
be empty. Sometimes the term proper termination is used to
describe the first two requirements. The last requirement
states that there are no dead transitions in the initial state i.

Reachability Graph for Order Processing
Start

Order

rejected

Articles

available

Order

shipped

Payment

not done

Order
completed

Material

available

Order

accepted

Purchase

ready

Articles must

be produced

End

Plan

available

Articles

to produce
+

Articles

to produce
+

Purchase

ready
+

Plan

available

Material

available
+

Start state –
token is in
place Start.

Intermediate state – tokens are
in places Purchase ready and
Articles in produce at the same
time.

Final state –
token is in
place End.

Faulty Process

Start

Consider

order

Begin

production

Begin

invoicing

Make

production

plan

Decide type

of payment

Plan

available

Begin

payment by

invoice

Begin cash

payment

Pay cash

Cash

paid

Pay deposit
Produce

articles

Articles

produced

Deposit

paid

Send
invoice

Invoice

not paid

Check

payment

Invoice
paid

Complete

payment

Payment

completed

Ship
order

End

Construct reachability
graph and find the
problem(s).

Verification of Soundness
• The first method how to determine soudness requires to add an additional

transition t* that connects start place i with end place o (short-circuited net).
Based on that the soudness of of the WF-Net corresponds with two
properties: liveness and boundness of short-circuited net. The issue is that
verification of liveness and boudness requires computer tools for complex
process models.

• The second method is based on the construction process of correct
workflow nets. If we have two sound and safe WF-Nets WF1 and WF2 and
we have transition t in WF1 which has just one input and one output place,
then we may replace task t in WF1 by WF2 and the resulting WF-Net is
sound and safe again.
• The safety is required because in case that input place of substituted

transition t contains more than one token the inserted WF-Net does not
need to be sound.

Sound and Safe Components

x

Basic block

x y

Sequence

x

y

Implicit selection

x

y

Explicit selection

x

y

Concurrency

x

y

Loop

Well-structured WF-Nets
• Well-structured WF-Net contains balanced AND/OR-splits

and AND/OR-joins. It means that two concurrent flows
initiated by AND-split should not be joined by OR-join. Two
alternative flows created via OR-split cannot be synchronized
by AND-join.

• The main advantage of using well-structured nets is that
sound and well-structured WF-Nets are also safe. It means
that based on using of sound and well-structured components
these components are also safe and we can build new sound
and well-structured WF-Nets (and components).

Building Sound WF-Nets from Components
Start

End

Order

processing

Consider

order

Process
order

End

Order

accepted

Order

completed

Order

rejected

Close

order

Consider

order

Invoicing

End

Order

accepted

Order

completed

Close
order

Check

articles

availability

Articles must

be produced

Production

Articles

produced

Articles

available

Ship

order

Order

shipped

Consider

order

Provide

articles

End

Order

accepted

Order

completed

Order

rejected

Close

order

Order

shipped

Invoicing

Start Start
Start

Building Sound WF-Net cont.
Consider

order

Cashing

End

Order

accepted

Order
completed

Order

rejected

Close
order

Check
articles

availability

Articles must
be produced

Articles

produced

Articles
available

Ship

order

Order

shipped

Purchase

material

Material

available

Produce

articles

Purchase

ready

Make

production

plan

Plan

available

Articles

to produce

Send

bill

Payment

not done

Start

Begin
production

Consider

order

Check

payment

End

Order

accepted

Order
completed

Order

rejected

Close
order

Check
articles

availability

Articles must
be produced

Articles

produced

Articles
available

Ship

order

Order

shipped

Purchase

material

Material

available

Produce

articles

Purchase

ready

Make

production

plan

Plan

available

Articles

to produce

Send

bill

Payment

not done

Outstanding

Begin

production

Formalization and Verification of Processes

• Key issues of formal methods:
• Formal methods reduce number of errors in process

specification but the mathematical representation requires
more time to obtain results.

• Formal methods are hard to scale up to large systems.
• The main area of their applicability is critical systems. In this

area the use of formal methods seems to be cost-effective.
• Formalization of informally defined processes:

• The idea is to combine formal methods with diagrammatic
languages like EPC or UML.

EPC Formalization
• An event-driven process chain is a five-tuple EPC = (E, F, C, T, A) :

• E is a finite set of events,
• F is a finite set of functions,
• C is a finite set ogf logical connectors,
• is a function which maps each connector onto a connector

type,
• is a

set of arcs.
• Next step is to define rules of how the EPC model can be transformed to WF-Net.
• Resulting WF-Net can be verified using standard methods and tools applicable to

Petri Nets.
• Building of EPC diagrams can employ well-structured components as well as

constructing WF-Nets.

{ }��→ ,,: XORCT

() () () () () () ()CCFCCFECCEEFFEA ×�×�×�×�×�×�×�

Mapping Connectors on Petri Nets

V

XOR

V

XOR

e1 e1

e1 e1

e1 e1

e1 e1

e2 e2

e2 e2

f1 f1

f1 f1

f1 f1

f1 f1

f2 f2

f2 f2

V

XOR

V

XOR

e1 e1

e1 e1

e1 e1

e1 e1

e2 e2

e2 e2

f1 f1

f1 f1

f1 f1

f1 f1

f2

f2 f2

Connecting
Events to
Activities

Connecting
Activities to
Events

Transformation of EPC Model to Petri Net

Event 1 Event 2 Event 3

XOR

Event 1 Event 2 Event 3

XOR

Activity X

Event X

V

Activity 1

Event 4

V

Activity 1

Event 4

Event 1 Event 2

Event 4

Activity 1

Activity X

Event X

Arcs between two connectors must be
replaced by events and functions before the
EPC is mapped onto a Petri Nedt.

Transformed EPC:
Order Processing

Order
received

Consider

order

Order
rejected

Order
accepted

Check

articles

availability

Articles
available

Ship

order

Order

shipped

Send

bill

Payment

not done

Check

payment

Order
completed

Articles must
be produced

Purchase

material

Make
production

plan

Material

available

Plan
availableProduce

articles

Articles

produced

Uncolored (fictive)
places and transition
were added to Petri
Net because of
transfromation
process.

Exercise 7
• Transform the give process model

specified in EPC diagram to Petri Net.
Is this process sound?

Articles must

be produced

V

Purchase

material

Make
production

plan

Material
available

Plan available

V

Produce

articles

Articles

produced

Software Tools
• ARchitecture of Integrated Systems (ARIS)
• Business Process Studio (BP Studio)

Architecture of Integrated Systems
• Conceptual Framework that helps to describe organizations:

their organizational structure, their processes and their
resources in terms of people and information systems.

• Software tool that helps to apply the conceptual framework.
The software tool helps to electronically describe
organizations in a consistent manner and analyze them in
some respects.

• More at … http://www.ids-scheer.com

http://www.ids-scheer.com/

ARIS Framework
Management

SalesManufacture

Sale

Process

request
Process offer

Check

production

Determine

delivery date

Request

accepted

Process

request

Request

processed

Process offer

Offer Request

Customer

SalesRequest

Organizational view

Data view Control view Functional view

Business Process Studio
• BPStudio is user friendly, so domain experts without a special

knowledge of information technology can use it.
• BPStudio is based on a formal approach (Petri Nets) that

enables analysis, simulation, and later execution of a built
model (workflow engine).

• BPStudio is focused on concurrency as a primary and
inherent property of any business process

• Download … http://vondrak.cs.vsb.cz/download.html

http://vondrak.cs.vsb.cz/download.html

Three Aspects of Business Modeling

Functional

Model

Activity Coordination

Model

Object

Model

Business
Process

The main aim of the functional model is
an identification of the business process
architecture, as well as the identification
of process customers and products.Object model identifies static structure of

all entities (objects) that are essential for
the enactment of the process.

Coordination model shows how the
process will be enacted. The coordination
model specifies interactions among
objects and defines the way how all these
activities are synchronized.

Functional Model: Car Sale

Process
Customer

Process
Owner

Process
Product

Process

Collaboration relationship
exhibits a possibility
of concurrent existence of
processes

Contains relationship
means that a process
launches contained
process and finishes it
when required
products are obtained

Functional Model: Financing

External Process is not
elaborated in a given “Car
Sale” process model

Functional Model: Car Hand Over

Object Model: Car Sale

Active
Object

Passive Object
with attributes
displayed

Association
Relationship

Association
Cardinality

Object Model: Financing

Generalization/Specialization
Relationship

Object Model: Car Hand Over

Active Object with
attributes and services
displayed

Coordination Model: Car Sale

Activity with specified
scenarios, their costs and
durations

Contained process

Fork

Coordination Model: Financing

Branching

Coordination Model: Car Hand Over

Responsibility

State has to correspond with Car
Sale coordination model

Structural Analysis
• What activities define the process
• What activities and processes the active object participates in
• What activities and processes the active object is responsible

for
• What activities and processes manipulate, consume or

produce the passive object

Before activity execution

After activity execution

Simulation

• Verification
• Validation
• Costs analysis
• Time analysis

Simulation Result Predicted duration

Duration of just
finished activity

Duration of running
activity

Utilization means how much time
object spent in a process compared
to the process total time.

Cloning

Process model
describes how the
process should look.
Process is simulated
by a computer.

Process instance
represents real process
that exists and humans
execute it using tools
like machines,
computers etc.

Process Enactment

BPStudio Architecture

ORB

BP Actor

Web Browser
BP Actor

BP Model

Model Repository

Web Browser
BP Viewer

BP Control

Instance Repository

Conclusions
• Common methods for business modeling were introduced:

IDEF, EPC and UML.
• Importance of formal methods and their contribution to

business process modeling were demonstrated.
• Software tools ARIS and BPStudio were introduced to show

how eEPC and Petri Nets can be used in practice.

Solution to Exercise 1

TITLE:NODE: NO.:A5 Fakurace a inkaso

1

Invoice sending

2

Payment

Checking

Bill of sale

Bill sent

Bill sent

Order closed

Bank statement

Accounting

department

Solution to
Exercise 2

Articles must

be produced

V

Purchase

material

Make

production

plan

Material

available

Plan

available

V

Produce

articles

Articles

produced

Check

material

availability

V

Material in

stock

Material

shipped

V

Material must

be purchased

Solution to Exercise 3

«worker»

Sales

«entity»

Material

«entity»

Product

«worker»

Manufacture

1

*

purchases

* 1

is required by

1

*

produces

*

1

is used by

Solution to Exercise 4
ManagerAccountant

Invoice drawing

Authorization

Invoice sending

[amount > 5000 USD]

[amount <= 5000 USD]

Solution to Exercise 5

yrry

gyyg

Red

Yellow

Solution to Exercise 6
Start

Accept

order

Order

accepted

Send

bill

Bill

sent

Accept

payment

Payment
accepted

Ship

order

End

Cancel
order

Solution to Exercise 7
Articles must
be produced

Articles

produced

Purchase

material

Material

available

Make

production

plan

Plan available

Produce

articles

The WF-Net
is sound.

