Java Programming

Fundamentals of Programming in Java

Ivo Vondrak, 2024



Why Java?

Because of this ...

The table shows data from the paper by Rui
Pereira, Marco Couto, Francisco Ribeiro, Rui
Rua, Jacome Cunha, Joao Paulo Fernandes,
Joao Saraiva, Ranking programming
languages by energy efficiency, Science of
Computer Programming, 2021

Energy
(c) C 1.00
(c) Rust 1.03
(c) C++ 1.34
(c) Ada 1.70
(v) Java

(c) Fortran
(c) Swift

(c) Haskell
(v) C#

(c) Go

(i) Dart

(v) F#

(i) JavaScript
(v) Racket

(i) TypeScripl
(i) Hack

(i) PHP

(v) Erlang

(i) Lua

(i) Jruby

(i) Ruby

(i) Python

(i) Perl

(c) C
(c) Rust
(c) C++
(c) Ada
(v) Java

(c) Go

(c) Pascal

(c) Ocaml

(v) C#

(v) Lisp

(c) Haskell
(c) Swift

(c) Fortran
(v) F#

(i) JavaScript
(i) Dart

(v) Racket

(i) Hack

(i) PHP

(v) Erlang

(i) Jruby

(i) TypeScript
(i) Ruby

(i) Perl

(i) Python

(i) Lua




References

« SCHILDT, Herbert, 2022. Java: A Beginner’s Guide, Ninth Edition. 9 edition. New York: McGraw-Hill
Education. ISBN 978-1260463552.

 Oracle.The Java™ Tutorials. accessed September 29, 2022,http://docs.oracle.com/javase/tutorial/
index.html.

 Oracle.The Java™ SE API. accessed September 29, 2022, http://docs.oracle.com/javase/17/docs/api/
index.html

« BLOCH, Joshua, 2018. Effective Java. 3 edition. Boston: Addison-Wesley Professional. ISBN
978-0-13-468599-1.

« SCHILDT, Herbert, 2021. Java: The Complete Reference, Twelfth Edition. 12 edition. New York: McGraw-
Hill Education. ISBN 978-1260463415.

* BARNES. Objects First with Java: A Practical Introduction Using Blued, Global Edition. 6th edition.
Boston: Pearson, 2016. ISBN 978-1-292-15904-1.



1st Part: Basics




Java as a Technology

Java program structure

Variables, types, operators
Objects and classes

Structure of classes, enumerations
Java control structures

Arrays

Methods with a variable number of arguments



Java as a Technology

Features of Java

* Architecture Neutral and Portable
* Object Oriented

* Robust, Dynamic and Secure

* Multithreaded

 Distributed

* Simple language — core is AP|



Architecture Neural

sWrite once, run anywhere” Sun Microsystems

e Java source code is “compiled” into high-level, machine independent, Java
Bytecode (.class files) format.
 packages java.io.”, java.util.”, java.awt.”

* Java Virtual Machine is an imaginary machine that is implemented by
emulating it in software on a real machine.

 JVM specification provides concrete definitions for implementation of
iInstruction set, register set, class file format, stack ..



Compile Time and Runtime

Java program runs in a JVM

Compile time Runtime

Class
Loader
Source
Java
Compiler

Bytecode
Verifier

' Generator |

)




Java Program Structure

main as an entry point to an application

public class Launcher A
public static void main(String[] args) {
System.out.println("Hello world of JAVA!!!");
I3

ivo@macbook-pro-1 Lecture 1 % Ls
Launcher. java
ivo@macbook-pro-1 Lecture 1 % javac Launcher.java

ivo@machook-pro-1 Lecture 1 % 1s 1. Source file Launcher.java compiled

Launcher.class Launcher.java

ivo@macbook-pro-1 Lecture 1 % java Launcher 2  LLauncher.class executed in JVM
Hello world of JAVA!!!

ivo@macbook-pro-1 Lecture 1 %




Basic Java Constructs

Comments and Statements

« Comments
// comment on one line
/* comment on one or more lines */
/™ documenting comment, comment that should be included in any
automatically generated documentation (the HTML files generated by the
javadoc command **/

« Statements form the smallest executable unit in a program

String message = "Hello world of JAVA!!I!";
System.out.println(message);




Identifiers

Identifiers name variables, functions, classes, and objects -
anything that programmers need to identify and use.

e |dent
 nameOfSomething
* _name

e User namet

e $alsoValid



Data Types

Data types refer to the classification of data that tells the
compiler or interpreter how the programmer intends to use the

data.

* Primitive types - only values

 Object types — reference to the instance of class:
» types from Java (more than 18000) — e.g. String

» defined by user — e.g. Rectangle



Primitive Data lypes

Java uses five basic element types: boolean, character, integer,
floating point, and string.

Type Contains Default Size
boolean true or false false 1 bits
char unicode character | \u0000 16 bits
~byte signed integer 0 8 bits
short signed integer S, 16 bits
int signed integer S, 32 bits
long signed integer S, 64 bits
float floating point 0.0 32 bits
double floating point 0.0 64 bits
String string of chars null ?"? bits




Declarations and Assignment

Different data types determine the kind of operations that can be
performed on the data, how much space it occupies in memory,
and how the bits representing the data are interpreted.

int i, j; // declare integer variables
long 1 = 100L; // declare long variable
float x = 3.14159f; // declare and assign floating point
double y = 3.14159; // declare and assign double;
boolean cond; // declare boolean variable
char cl, c2; // declare char variables
String label, // declare string variable
cl = 'X'; // assign character

label = "Hello!"; // assign string

i =1; // assign integer variable

j = i+1; // assign integer variable




Operators

unary, binary, assignment, relational, logical, ternary, bitwise, cast

e Java support almost all of the standard C operators:
p— > < ' ~ ?
== <= >= !: && ” ++ -

*

+ - / & | N % << > >>>
+= = "= [= &= = N= Y= <<= >>= >>>=

 Operator instanceof returns true if the object on the left-hand side is an
iInstance of type specified on its right side.

public class Launcher A
public static void main(Stringl[] args) {
String message = "Hello world of JAVA!!lI";
System.out.println(message);
System.out.println(message instanceof String); // prints true

}




Using Operators

Just some examples ...

int i =1 + 3; // 1 == 4

int j = 1; /] j =1

j+=1; //j=j+1=>j==2
i++; // 1 = 141 => 1 == 5
boolean cl1 = true; // cl == true
boolean c2 = !cl1; // c2 == false
String name = "Richard” + “Gere"“;

int 1, J = 5;

float x = 10.2f;

i = (int) x / j; // explicit cast needed, i ==
i = (int) (x / (float) j);




Object Type

Objects and classes

* Object is an distinguishable entity that has:
* ldentity: an uniqueness which distinguishes it from all other objects
 Behavior: services it provides to another objects
» State: value of attributes held by an object
* Class is an abstraction of objects with similar implementation
e Class is definition of set of similar objects

 Every object is an instance of one class



Class Definition

Class definition of a car

public class Car 1
// State variables
private int speed, direction;
String color;

// Operations - methods

public Car (String color) { // Constructor
this.color = color;

}

public void drive (int newSpeed) {
speed = newSpeed;

}

public void stop() {
speed = 0;

}

public void turn (int newDirection) {
direction = newDirection;
s




Creating and Using an Object

Object is an instance of a class

In Memory
references
public class CarApp { mvCar nu
public static void main(Stringl[] args) A d
Car myCar, yourCars; ~ yourCar nu
yourCar = new Car("red"); » yourCar|{0x00010011
yourCar.drive(25);
yourCar.turn(90);
yourCar.stop();
myCar = yourCar; > myCar |0x00010011
System.out.printtn("My car is " + myCar.color);
// prints "My car 1s red"
}
1 speed 0
T direction 90
color wred”

values



public class Car implements Cloneable {
// State variables

Copying Object i

// Operations - methods

ObjeCt must be Cloneable public Car (String color) { // Constructor

this.color = color:

}

public void drive (int newSpeed) {
speed = newSpeed;

}

public void stop() {
speed = 0;

}

public void turn (int newDirection) {
direction = newDirection;

}
@Override
public Object clone() {
try {
All these new things are return super.clone();
going to be explained later. } catch (CloneNotSupportedException e) {
return null;
I3
I3




Copied Objects Usage

To copy the object method clone() must be used.

In Memory
references
public class CarApp { c
public static void main(Stringl[] args) { myCar nu
Car myCar, yourCar; » yourCar nu
yourCar = new Car("red"); - yourCar|0x00010011

yourCar.drive(25);
yourCar.turn(90);
yourCar.stop();
myCar = (Car) yourCar.clone(); > myCar _|0x00011011
myCar.drive(100);

System.out.println("My car speed is "+myCar.speed);

// prints "My car speed is 100"

System.out.println("Your car speed 1is "+yourCar.speed);sPeed 100 speed 0

// prints ,Your car speed 1s 0" direction 90 direction 90
} color red” color Jred”

values values




Checking Objects for Equality
What objects are equal ...

public class Car implements Cloneable {

» Operator == tests whether // State variables
int speed, direction;

two variables refer to the String color;
same object (identity), not

whether two object contain // Operations - methods

the same values. @Override
public boolean equals(Object obj) {
 |In Java, number of classes if (gbj inﬁtagceof f(ig")){ i
: ar otherCar = (Car) obj;
define an method equ_als() return this.speed == otherCar.speed &&
that compares containment this.direction == otherCar.direction &&
(state) of objects. this.color.equals(otherCar.color);
} else {

return false:

}




Equality Checking

Different cars with the equal state ...

public class CarApp {
public static void main(String[] args) A
Car myCar, yourCar;
yourCar = new Car("red");
yourCar.drive(25);
yourCar.turn(90);
yourCar.stop();
myCar = (Car) yourCar.clone();
myCar.drive(100);
System.out.println("My car speed is " + myCar.speed);
// prints "My car speed 1s 100"
System.out.println("Your car speed is " + yourCar.speed);
// prints "Your car speed 1s 0"
System.out.println(myCar == yourCar); // prints "false"
myCar.stop();
System.out.println(myCar.equals(yourCar)); // prints "true"




Overloading Constructors

You can write more than one constructor in a class.

 Each overloaded constructor is named the same.
 But they differ in any of the following ways:
 Number of parameters.
* [ypes of parameters.
* Ordering of parameters. Bubltirc]:isci(alrvsrzit{e"); // Constructor #1
}

public Car (String color) { // Constructor #2
this.color = color;
I3




Overloading Methods

Any method can be overloaded same way as constructors

* All versions of an overloaded method are named the same.
e But differ in any of the following ways (in a signhature of the method):
* Number of parameters
 Types of parameters
* Ordering of parameters
 The method signature does not include ...
« Name of parameters

 Method return type



Generalization and Inheritance

Taxonomy is a method of categorizing and organizing entities into
groups based on shared characteristics

* Generalization is the relationship between a class and one or more refined
versions of it.

Inheritance refers to the mechanism of sharing attributes and operations.

4 Car attributes: speed, direction, color
generalize operations: drive, turn, stop

inherits attributes: + numOfPassengers
attributes: + loading .
operations:
operations: + load

Passenger




SUbCIaSSing public class TruckApp {

public static void main(String[] args) {
Subclass extends class Truck bigTruck:

bigTruck = new Truck("blue", 1000);

public class Truck extends Car { 0i . _
o . gTruck.drive(125);
(/tA?dlg}on?I state variable bigTruck.load(2000);
;9 Opgia%QEAS nethods System.out.println(bigTruck.speed);
. o . . // prints "100"
pUbl;SpZE?Egléi§rlng color, int loading) 1 System.out.println(bigTruck. loading);
this. loading = loading; Y // prints 72000
}
@Override )

public void drive (int newSpeed) {
if (newSpeed <= 100)
super.drive(newSpeed) ;
else
super.drive(100);
I3
public void load(int loading) {
this. loading = loading;
I3




EnumeratiOn public enum Direction {

NORTH(@, 1), EAST(1, @), SOUTH(@, -1), WEST(-1, 0);

Special object type private int dx, dy;
private Direction(int dx, int dy) {
public enum SimpleDirection A this.dx = dx;
NORTH, EAST, SOUTH, WEST; this.dy = dy;

+ s
— public String getDirectionString() {
return String.format("[%d, %d]", dx, dy);
s

public class DirectionApp {
public static void main(String[] args) {

SimpleDirection simple = SimpleDirection.NORTH;
Direction direction = Direction.NORTH;
System.out.println(simple);
// prints "NORTH"
System.out.println(direction.getDirectionString());
// prints "[0Q, 1]"




Java Control Structures
Legacy from C/C++

e \ery similar

* block of code; if, if/else; ternary operator; switch, loops (for, while,
do-while); break, continue

* Conditional expression has to be boolean type (implicit conversion from int
is not allowed)

* Types used in switch - primitive: byte, char, short, int; object: String,
enumeration (enum)

e for exists in a form of a for-each construction.



Branching Statement if-else

if (boolean) {

statements;
else {
statements;
} float x, v;
if (y == 0) 1
System.out.println("Divided by zero!“);
I3
else {

X =X/Y;
s




Branching Statement switch

switch (expr) {

case expri:
statements;
break;
case expr2.
statements: Lt counters
break gwitch (counter % 3) {
’ case 0:
default: System.out.println("Hello");
] break;
statements; cace 1:
} System.out.println("Hi");
break;
default:
System.out.println("Bye");
break;

L — P—



Loop Statements for, while, and do

for (init_expr; test_expr; increment_expr) {

statements;
} public class JavaControlApp A
public static void main(String[] args) {
for (int 1 = 0; i < 10; i++) {
_ System.out.println("Value: "+ i);
while (boolean) { }t o
in = 0;
statements; uhile (j < 10) {
} System.out.println("Value: "+ j);
]++;
I3
int k = 0;
do { do {
System.out.println("Value: "+ k);
statements; K+
} while (boolean); , o vhite (o< 100




General Flow Control

label: statement; // statement must be a loop statement
break [labe/] import java.io.IOException;

continue [label] public class JavaControlApp {

return expr; publiﬁts’é?tlc void main(String[] args) throws IOException {
loop: while (true) {
for (int 1 = 0; 1 < 10; i++) A

System.out.print("Enter character #" + (i + 1) + ": ");
c = System.in.read();
if (¢ == -1 || c == '"\n') {
break loop; // jumps out while
} else {
System.out.println("Read: " + (char) c);
}
// Ignoring remaining characters
while (System.in.read() '= '\n');




Exceptions and Exception Handling

try {
critical_statements;

}
catch (ExceptionType e) {

// Handle exception object e

]
finally {

always_statements;

}

 Declaring Exceptions: void method(arg...) throws ExceptionType {...}

* Defining and Generating Exceptions: throw new MyException(“text to
show”)



Arrays

An array iIs a data structure that allows you to store multiple values
of the same data type In a single variable.

* Fixed Size: Once an array is created, its size cannot be changed. The size is
defined when the array is instantiated.

 Zero-Based Indexing: The elements of an array are accessed using an index
that starts from O for the first element and goes up to length-1 for the last
element.

« Homogeneous Elements: All elements in an array must be of the same data
type.



public class ArrayApp {
public static void main(String[] args) {
// Declare and 1initialize an array
int[] numbers = {10, 20, 30, 40, 50};
float[] values = new float[3];

// Access and modify array elements
System.out.println("First element: " + numbers[0]);
numbers[2] = 35; // Modify the third element
values[1l] = 3.14f; // Modify the second element

// Print the entire array of numbers

System.out.println("Array of numbers elements: ");

for (int 1 = 0; 1 < numbers.length; i++) {
System.out.print(numbers[i] + " ");

I3

System.out.printin();

First element: 10
Array of numbers elements:
10 20 35 40 50

// Print the entire array of values

// using for—each loop

System.out.println("Array of values elements: ");

for (float value : values) {
System.out.print(value + " ");

}

Array of values elements:
0.0 3.14 0.0 2
ivo@macbook-pro-1 Lecture 1 % (]




Multidimensional Arrays

Java also supports multidimensional arrays, such as 2D arrays
(arrays of arrays):

public class MultiDimensionalApp {

public static void main(String[] args) A
int[][] matrix = new int[3][3]; // A 3x3 matrix (2D array)

matrix[0] [0] = 1;

matrix 1][1] = 5;
for (int i = 0; i < matrix.length; i++) {

for (int j = 0; j < matrix[i].length; j++) {
System.out.print(matrix[i][j] + " ");

}
System.out.println();

0
5
0
0

}
— ivo@macbook-pro-1 Lecture 1 %




Method with a variable number of arguments

An alternative declaration of a method parameter of array type

* Declared with “...”
» Construction of array is not necessary in the case of a method calling

 Method is called with a variation number of parameters separated by “,

 Parameters are accessed in the method as they were in an ordinary array



public class VariableNumberApp A
public static void main(String[] args) A
printNumbers(1, 2, 3, 4, 5);

int[] numbers = {1, 2, 3, 4, 5};
printOldFashioned(numbers);

}

// Variable number of arguments
public static void printNumbers(int... numbers) {
for (int number : numbers) {
System.out.println(number);
s

}

// 0ld-fashioned way with an array
public static void printOldFashioned(int[] numbers) <{
for (int number : numbers) {
System.out.println(number);
I3




2"d Part: More than Basics



Program structure, packages and classes
Advanced Object-Oriented Approach
Classes and Interfaces

Object construction and destruction



Program Structure

A program In Java consists of one or more class definitions, each
of which has been compiled into its own .class file of Java Virtual
Machine object code. In case of Java application one of these
classes must define a method main().

public class App {
public static void main(String[ 1 arg) {
for (int 1 = 0; i < arg.length; i++)
System.out.print (argli] + " ");
System.out.println ("\n");

}




Packages and Classes

A package is a namespace that organizes a set of related classes

 Every compiled class is stored in a separate file (.class). This class must be
stored in a directory that has the same components as the package name =>

« com.example.myapp.MyClass and com\example\myapp\MyClass.class
e com.example.myapp.utils.Utility and com\example\myapp\utils\Utility.class

» Source code file (.java) consists of one or more class definitions. Only one
class may be declared public and the source file must have the same name



Defining and Importing Packages

To declare a package, you use the package keyword at the beginning of your
Java source file, followed by the package name. To use a class from another

package, you need to import it using the import statement. This allows you to
refer to classes by their short names rather than their fully qualified names.

package com.example.myapp; import com.example.myapp.MyClass;

import com.example.myapp.utils.Utility;
public class MyClass {

public void sendMessage() { public class Main {
System.out.println("Hello from MyClass"); public static void main(String[ ] arg) A{
1 MyClass myClass = new MyClass();
1 Utility utility = new Utility();
' package com.example.myapp.utils; myClass.sendMessage();
utility.printMessage();
public class Utility { }
public void printMessage() { }

System.out.println("Hello from Utility"); —
I3

You can also import all classes from a package using a wildcard (*)



Default Package and Access Modifiers

If you don’t specify a package at the beginning of your Java file, the class is
placed in the “default” package. The default package has no explicit name, and
classes in the default package cannot be imported by classes In other packages.

* public: The class or member is accessible from any other class.

* protected: The member Is accessible within its own package and by
subclasses.

» default (package-private): The class or member is accessible only within its
own package (no modifier is specified).

» private: The member Is accessible only within its own class.

Packages in Java are a powerful way to organize your code into a structured
hierarchy, manage naming conflicts, and control access. They are essential
for building modular and maintainable applications.



Packages in the Java Class Library

The classes of the Java class library are organized into packages

» java.lang provides classes that are fundamental to the design of the Java
language. It is automatically imported into all Java programs.

» Java.awt (Abstract Window Toolkit) provides classes to build GUI components
* java.net provides for networking applications
* Java.time provides classes for dates, time, instants, and durations

 Any many many others ...



Libraries and JARs

Compiled classes could be packed into one jar archive (zip
format) and reused

 JVM looks up classes relative to the directories specifies by the CLASSPATH

environment variable or by parameter -classpath (-cp) passed as the
argument for java statement.

« CLASSPATH= .;c:\java;c:\projects\mylib\classes.jar
java Main

or

java —cp .;c:\Java;c:\projects\mylib\classes.jar Main



Object-Oriented Approach

Java’s object-oriented nature makes it a powerful and flexible language for developing
complex software systems. It encourages the use of objects to model real-world
entities, promotes code reuse through inheritance, and enhances maintainability and
scalability through encapsulation, polymorphism, and abstraction.

* Object, Type, and Class

e Subtypes and Subclasses

» Creating and Destroying Objects
» Class Variables and Methods

» Data Hiding and Encapsulation

e Abstract Classes



Object, Type, and Class

Interfaces and classes

* Object is an distinguishable entity that has:
ldentity: an unigueness which distinguishes it from all other objects; Behavior:
services it provides to another objects; State: value of attributes held by an
object

e Type: visible interface and behavior
 Usually the object is a member of multiple types
 Two objects with different implementation may be the same type

* Class is an abstraction of objects with similar implementation:
Class is definition of set of similar objects; Every object is an instance of the
one class



Interface and Class Declaration

Countenable and Printable Types

package counter; package counter;

public class Counter implements Countenable, Printable {

public interface Countenable A orivate int count = 0;

void increment():

\ void decrement(); public void increment() {

count++;
I3

package counter; public void decrement() {

public interface Printable { count-——;

void printMessage(); I
}

public void printMessage() {
System.out.println("Count: " + count);

}




package counter;

public class CounterApp {

public static void main(String[] args) {
Countenable counter = createCounter():

Printable printer = (Printable)
counter.increment():
counter.increment():
counter.decrement():;
printer.printMessage();

// Count: 1

L

counter;

// Tactory method creates instance of Counter
public static Countenable createCounter() {

return new Counter():

L




What is the Benefit?

Re-use of the code for completely different implementations of Counter!

package counter;
public class StopWatch implements Countenable, Printable {
private int hours, minutes, seconds;
public void increment() <{
seconds++;
if (seconds == 60) {
seconds = 0;
minutes++;
if (minutes == 60) {
minutes = 0;
hours++;

}
}

public void decrement() {..
public void printMessage() {

System.out.println("Stopwatch: "+hours+" hours, "+minutes+" mins, "+seconds+" secs.”);
I3




package counter;

public class StopWatchApp {

// main method 1s the same as 1n CounterApp.java

public static void main(String[] args) {
Countenable counter = createCounter();
Printable printer = (Printable) counter;
counter.increment();
counter.increment();
counter.decrement();
printer.printMessage();
// Stopwatch: @ hours, 0 mins, 1 secs.

I3

// Tactory method creates instance of StopWatch

public static Countenable createCounter() {
return new StopWatch();

I3




Referring to Object Itself

The keyword this can be used to refer to an object itself. If no
object reference is specified implicitly this is used.

package counter;

public class Counter implements Countenable, Printable {
int count = 0;

public void increment() {
count++;
}

public void incrementBy(int count) {
this.count = this.count + count;
}

// .




Referring to the Parent Class

The keyword super allows to reference methods that were
overriden.

package counter;

public class LimitedCounter extends Counter {
int limit;

public LimitedCounter(int limit) {
this. limit = limit;
I3

public void increment() {
if (count < limit) {
super.increment();
}

// .




Constructors

Initialization of the new object

* Every class has at least one constructor method responsible for initialization
of the new object. If no constructor is defined Java creates default one with

no arguments.
* [he constructor name is always the same as the class name.

* The return object is implicitly an instance of the class. No return type is
specified, nor is the void keyword used.



Multiple Constructors

Many ways how the new object is Initialized

package counter;

public class Counter implements Countenable, Printable {
int count = 0;

public Counter(int count) {
this.count = count;

+

public Counter() { // default constructor
this(0); // calls the other constructor

I3

/] .




Object Destruction

Garbage Collection destroys objects that are no longer needed.

» Garbage Collection runs as low priority thread when nothing else is going on
or when the interpreter has run out of memory.

e Java finalize method performs finalization for an object.

package counter;

public class Counter implements Countenable, Printable {
/]

protected void finalize() {
System.out.println("Counter object is destroyed");
}




Abstract Class

An abstract class In Java Is a class that cannot be instantiated on
Its own and is meant to be subclassed.

 An abstract method has no body; it has a signature definition followed by a
semicolon. Any class with an abstract method is automatically abstract.

e An abstract class cannot be instantiated.

e A subclass of an abstract class can be instantiated if it overrides each of the
abstract methods and provides an implementation.

abstract class AbstractCar {
public abstract void drive();
public abstract void stop();
public abstract void turn();

}




3rd Part: Advanced



Nested classes
Lamlbda expression
(Generics

Wrapper classes



Nested Classes

A nested class i1s a class defined within another class. Nested classes can be used for various

purposes, and they offer several advantages, such as encapsulation, organization, and improved
code readability.

o Static Nested Class: This is essentially a static class that is defined within
another class.

* Inner Class (Non-static Nested Class): An inner class is a non-static nested

class, and it can access the instance variables and methods of the outer
class.

e Local Class: Local classes are defined within methods, constructors, or
blocks.

 Anonymous Inner Class: Anonymous inner classes are a special type of
iInner class that don't have a name.



Static Nested Class

This Is essentially a static class that is defined within another class. It is associated with the outer
class but does not have access to the instance variables of the outer class. You can create an
instance of a static nested class without creating an instance of the outer class.

public class OuterClass {
static class StaticNestedClass {
// ...
+
+

// Creating an instance of the static nested class
OuterClass.StaticNestedClass nestedObj = new OuterClass.StaticNestedClass();



public class GeometryLibrary {
// Static nested class for Circle
public static class Circle {
private double radius;

public Circle(double radius) {
this.radius = radius;
F

public double calculateArea() {
return Math.PI *x radius * radius;
I3

}

// Static nested class for Rectangle
public static class Rectangle {
private double width;
private double height;

public Rectangle(double width, double height) A
this.width = width;
this.height = height;

I3

public double calculateArea() {
return width * height;
I3




public class Main {
public static void main(Stringl[] args) {

public class GeometryLibrary A GeometryLibrary.Circle circle = new GeometrylLibrary.Circle(5.0);
// Static nested class for Circle double circleArea = circle.calculateAreal();
public static class Circle { System.out.println("Circle Area: " + circleArea);

private double radius; GeometrylLibrary.Rectangle rectangle = new GeometryLibrary.Rectangle(4.0, 6.0);

double rectangleArea = rectangle.calculateArea();

public Circle(double radius) A System.out.println("Rectangle Area: " + rectangleArea);
this.radius = radius: b
1 ¥
public double calculateArea() A ——— —

return Math.PI *x radius *x radius;

}
}

// Static nested class for Rectangle
public static class Rectangle {
private double width;
private double height;

public Rectangle(double width, double height) A
this.width = width;
this.height = height;

I3

public double calculateArea() {
return width * height;
I3




Inner Class

An inner class Is a non-static nested class, and it can access the instance variables and
methods of the outer class. To create an instance of an inner class, you typically need an
Instance of the outer class.

class OuterClass {
class InnerClass {

//
¥
I

OuterClass outerObj = new OuterClass();
OuterClass.InnerClass innerObj = outerObj.new InnerClass();



public class Person {
private String name;
private int age;
private Address address;

public Person(String name, int age, String street, String city, String state) A
this.name = name;
this.age = age;
this.address = new Address(street, city, state);

}

// Non-static nested class for Address
public class Address {

private String street;

private String city;

public Address(String street, String city, String state) {
this.street = street;
this.city = city;

s

public void displayAddress() {
System.out.println("Address: " + street + ", " + city + ", " + state);
¥

}

public void displayPersonInfo() {
System.out.println("Name: " + name);
System.out.println("Age: " + age);
address.displayAddress(); // Accessing the inner class from the outer class

}

// Other methods for the Person class




public class Main {
public static void main(String[] args) A
Person person = new Person("John Doe", 30, "123 Main St", "Anytown', "CA");

public class Person { person.displayPersonInfo();
s

private String name; 1
private int age;

private Address address; e ———

public Person(String name, int age, String street, String city) {
this.name = name;
this.age = age;
this.address = new Address(street, city);

}

// Non-static nested class for Address
public class Address A

private String street;

private String city;

public Address(String street, String city) {
this.street = street;
this.city = city;

s

public void displayAddress() {
System.out.println("Address: " + street + ", " + city + ");
¥

}

public void displayPersonInfo() {
System.out.println("Name: " + name);
System.out.println("Age: " + age);
address.displayAddress(); // Accessing the inner class from the outer class

}

// Other methods for the Person class




Local Class

Local classes are defined within methods, constructors, or blocks. They can only be
accessed within that particular scope. Local classes are often used when you need a class
for a specific, limited purpose within a method.

public class OuterClass {
void someMethod() {
class LocalClass {

//
}

LocalClass localObj = new LocalClass();



public class TaskManager {
private String managerName;

public TaskManager(String managerName) {
this.managerName = managerName;
s

public void addTask(String taskName) {
// Local nested class for Task
class Task {
private String name;

public Task(String name) A
this.name = name;

}

public void displayTask() {
System.out.println("Task Name: " + name);
System.out.println("Managed by: " + managerName);

}

// Create an 1nstance of the local nested Task class
Task task = new Task(taskName):

// Display the task details
task.displayTask();

}
// Other methods for the TaskManager class




public class Main A
| public static void main(String[] args) A
public class TaskManager 1 TaskManager taskManager = new TaskManager('"John");
private String managerName; taskManager.addTask("Complete project report");
taskManager.addTask("Schedule team meeting");

public TaskManager(String managerName)
this.managerName = managerName; }

} }

public void addTask(String taskName) {
// Local nested class for Task
class Task {
private String name;

public Task(String name) A
this.name = name;

}

public void displayTask() {
System.out.println("Task Name: " + name);
System.out.println("Managed by: " + managerName);

}

// Create an 1nstance of the local nested Task class
Task task = new Task(taskName):

// Display the task details
task.displayTask();

}
// Other methods for the TaskManager class




Anonymous Class

Anonymous inner classes are a special type of inner class that don't have a name. They are
often used when you need to provide an implementation for an interface or extend a class
for a one-time, small use case.

interface MyInterface {
void myMethod();
I3

public class OuterClass {
void doSomething() {
MyInterface anonymousObj = new MyInterface() {
@Override
public void myMethod() {
// Implementation of the interface method
I3

b



public class CounterGUI extends JFrame A
JButton inc = new JButton(" Increment "):
JTextField value = new JTextField("0"):

public CounterGUI() {
setTitle("Counter");
Panel north = new Panel();
north.add(value);
Panel south = new Panel():
south.add(inc);
add("North",north);
add("South",south);
inc.addActionListener(
// Anonymous class instantiated
new ActionListener() {
public void actionPerformed(ActionEvent e) {
String val = value.getText();
value.setText(Integer.toString(Integer.parseInt(val)+1l));




Lambda Expressions

A lambda expression, also known as a lambda function, iIs a feature that allows you to
write concise, inline implementations of single-method interfaces (functional interfaces).

 Basic syntax: (parameters) -> expression

« Parameters: These are the input parameters that the lambda expression
takes. If a lambda takes no parameters, you can simply use empty
parentheses (). For a lambda with a single parameter, you can omit the
parentheses around the parameter.

 Expression: This is the code block or statement(s) that represents the
Implementation of the functional interface's single abstract method. The result
of the expression is the return value of the lambda function.

e (inta,intb)->a+b



How to Use Lambda Functions

Lambda expressions are often used with functional interfaces, which are
interfaces with a single abstract method.

inc.addActionListener(e —> {
String val = value.getText();

value.setText(Integer.toString(Integer.parseInt(val)+1));
r);

__ Thread thread = new Thread(() —> {
for (int i = 0; i < 10; i++) {
System.out.println("Thread is running: " + 1i);
}

});
thread.start():

interface Calculator {
int calculate(int a, int b);
s

// Using a lambda expression to implement the interface
Calculator addition = (a, b) —> a + b;

int result = addition.calculate(5, 3);




Generics

Generics In Java are a powerful feature that allow you to write code that operates on objects of

different types in a type-safe and reusable manner. Generics provide a way to create classes,
Interfaces, and methods that work with specific types specified at compile time.

* Type Safety: Generics help catch type-related errors at compile time rather
than runtime. This means you can write more reliable and bug-free code.

 Code Reusability: With generics, you can create classes, methods, and

interfaces that work with a variety of data types, reducing the need for
duplicate code.

* Improved Readability: Generics make your code more self-documenting
because you can express the intended type of data explicitly.

« Compile-Time Checks: The Java compiler checks the correctness of your
generic code at compile time, ensuring that the specified types are consistent.



Generic Classes

You can create generic classes by specifying one or more type parameters in angle
brackets <T>. These type parameters represent the type(s) that the class will work with.

public class Box<T> {
private T content;

public Box(T content) {
this.content = content;

! public class Main {
public T getContent() A public static voiq main(String[] args) A
return content: Box<Integer> integerBox = new Box<>(1959);
! ' Box<String> stringBox = new Box<>(,Happy Birthday!'");

int intValue = integerBox.getContent();
String stringValue = stringBox.getContent();

System.out.println("Integer Value: " + intValue);
System.out.println("String Value: " + stringValue);




Generic Interfaces

Interfaces can also be generic. They define a protocol for
Implementing classes with specific types.

public interface List<T> {
volid add(T element);
T get(int index);

}




Generic Methods

You can create generic methods within non-generic classes,
allowing you to use generics in a more specified way.

public <T> T doSomething(T input) {
// Perform some operation with the input
return 1input;




Wildcards

Wildcards are used to generalize generic types, making them
more flexible and capable of working with unknown data types.

 Upper Bounded Wildcard (? extends T): This wildcard allows you to use the generic

type ? for data types that are a subtype of type T or equal to type T. For example, ?
extends Number allows you to use the wildcard for any data type that is a subtype of
or equal to the Number class, such as Integer or Double.

 Lower Bounded Wildcard (? super T): This wildcard allows you to use the generic
type ? for data types that are supertypes of type T. This allows you to work with
generic classes for data types higher in the class hierarchy than 1. For example, ?

super Integer allows you to work with generic classes for data types that are
supertypes of Integer, such as Number.

 Unbounded Wildcard (?): This wildcard allows you to work with any data type without

specifying a specific type. It is suitable for situations where you do not need to know
the specific data type but want to work with generic classes in a general way.



public static double sum(List<? extends Number> numbers) {
double total = 0;
for (Number number : numbers) {
total += number.doubleValue():
+

return total;

I

public static void addIntegers(List<? super Integer> numbers) {
numbers.add(42);
I

public static void printList(List<?> list) {
for (Object item : list) {
System.out.print(item + " ");
}

System.out.printin();
I




Wrapper Classes

What about primitive types? w

 Generic types are limited for working with object types.
* For every primitive type exists corresponding object type.

« Java compiler converts between primitive type and its object equivalent - if it is
necessary.

* valueOf method (e.q. Integer.valueOf(73)) converses from a primitive type or string
to object wrapper

o parseXXX method (e.g. parseFloat()) parse String and returns specific value as
primitive type

 xxxValue method (e.qg. floatValue()) returns the value in a specific primitive type.



List of Wrapper Classes

How to create primitive types from String

Primitive | Wrapper | Conversion method from string
class

boolean Boolean Boolean.parseBoolean(String s)

char Character | ...

byte Byte Byte.parseByte(String s)
Byte.parseByte(String s, int radix)

short Short Short.parseShort(String s)
Short.parseShort(String s, int radix)

int Integer Integer.parselnt(String s)
Integer.parselnt(String s, int radix)

long Long Long.parselLong(String s)
Long.parselLong(String s, int radix)

float Float Float.parseFloat(String s)

double Double Double.parseDouble(String s)




4th Part: Collection Framework



e Collections interfaces
e Collections implementation

* Collections utility class



Java Collection Framework

The Java Collections Framework (JCF) is a fundamental and comprehensive set of classes
and interfaces In Java that provide various data structures and algorithms to work with
collections of objects.

Interfaces: These define the common methods and behaviors for different types of collections. The core
collection interfaces include List, Set, Map, and Queue.

Classes: These are concrete implementations of the collection interfaces. Common classes include
ArrayList, LinkedList, HashSet, TreeSet, HashMap, and TreeMap, among others.

Algorithms: The framework includes various utility methods for working with collections, such as sorting,
searching, and shuffling.

Exceptions: Specific exceptions are provided for situations like attempting to access an element that
doesn't exist (NoSuchElementException) or adding duplicate elements to a Set
(IlegalArgumentException).

Iteration: lteration is a common operation when working with collections. The framework provides
iterators to traverse through collections.

Comparator: The Comparator interface is used for custom sorting of objects in collections.



Collection Interface

The Collection interface is the root interface in the Java Collections Framework. It

represents a basic collection of objects, and it defines methods common to all collection
types, such as add, remove, and contains.

e List Interface: Extends the Collection interface. Lists are ordered collections

that allow duplicate elements. Key implementations include ArrayList and
LinkedList.

» Set Interface: Extends the Collection interface. Sets are collections that do

not allow duplicate elements. Key implementations include HashSet, TreeSet,
and LinkedHashSet.

 Queue Interface: Extends the Collection interface. Queues are specialized
collections for managing elements in a first-in-first-out (FIFO) order. Key
iImplementations include LinkedList and PriorityQueue.



List Interface

List is the ordered (with defined index for every element)
collection that may contain duplicate elements.

e add(int, E), set(int, E), addAll(int, Collection<E>), get(int):E, remove(int).E -
add/remove elements to/from given position

* IndexOf(Object):int, lastindexOf(Object):int - find position of a given object

 [istlterator():Listlterator — return iterator that allows forward/backward
browsing



Set Interface

Set is the collection of elements that does not contain
duplicates.

e add(E):boolean, addAll(Collection<E>), contains(Object):boolean — added
constraints to inherited methods

 SortedSet: extends the Set in a way that enables the ordering



Queue Interface

Queue is a list of elements with a first in first out ordering.

e -add(E), offer(E) — enqueue
 -remove(): E, poll(): E — dequeue
e -element():E, peek():E — retrieves but not remove

 Deque: extends the Queue by a protocol that is required by a stack (Last In
First Out)



Iterable

Iterable is a base type for Collection that provides a comfort
way for a loop construction

public interface Iterable<T> {

Iterator<T> iterator()




import
import
import

public

java.util.ArraylList;
java.util.Iterator;
java.util.List;

class IterableExample {

public static void main(String[] args) {

List<Integer> numbers = new ArrayList<>();
numbers.add(1);
numbers.add(2);
numbers.add(3);

// Use the enhanced for loop (for—-each loop) to iterate over the list
for (int num : numbers) {

System.out.printin(num);
}

// Use the Iterator explicitly
Iterator<Integer> iterator = numbers.iterator();
while (iterator.hasNext()) {
int num = iterator.next();
System.out.println(num);




Map Interface

The Map interface represents a collection of key-value pairs,
where each key is associated with exactly one value.

 SortedMap Interface: Extends the Map interface. Sorted maps are maps that

maintain their keys in sorted order. Key implementations include HashMap
and [reeMap.

Map<String, Integer> wordCount = new HashMap<>();

String[] words = {"apple", "banana', "apple', '"cherry", "banana"};
for (String word : words) {

wordCount.put(word, wordCount.getOrDefault(word, @) + 1);
}

int appleCount = wordCount.get("apple"); // Retrieves the count of "apple"




Collections Implementation

* Lists:
* ArraylList: Implements a dynamic array, which can dynamically grow and shrink as needed.

* LinkedList: Implements a doubly-linked list, suitable for efficient element insertion and removal.

e Sets:
 HashSet: Implements a set using a hash table, which provides fast access but does not
guarantee order.

* LinkedHashSet: Extends HashSet and maintains insertion order.
* TreeSet: Implements a set using a red-black tree, which provides elements in sorted order.

 Queues:
* LinkedList: Can be used as a queue with methods like offer, poll, and peek.

* PriorityQueue: Implements a priority queue based on a heap data structure.

 Maps:
 HashMap: Implements a map using a hash table for key-value pairs.
* LinkedHashMap: Extends HashMap and maintains order of key-value pairs based on insertion
order or access ordet.
* TreeMap: Implements a map using a red-black tree for key-value pairs sorted by key.



Collections - Table View

Hash Table + Linked

Interface Hash Table Resizable Array |Balanced Tree | Linked List List

Collection HashSet ArrayList TreeSet LinkedList LinkedHashSet
-> List ArrayList LinkedList

-> Set HashSet TreeSet LinkedHashSet
-> Queue ArrayDeque LinkedList

—> Deque ArrayDeque LinkedList

Map HashMap TreeMap LinkedHashMap




Collections Utility Class

The goal is to perform various operations on collections (lists, sets, maps, etc.) and
algorithms related to collections. It offers a collection of static methods to manipulate and
work with collections In a more convenient and efficient manner.

Sorting Collections: You can use methods like sort to sort lists in natural order or
using a custom comparator.

Searching: Methods like binarySearch are used to perform binary searches on sorted
lists.

Shuffling: The shuffle method randomizes the order of elements in a list.
Reversing: You can reverse the order of elements in a list using reverse.
Filling Collections: Methods like fill can be used to fill a list with a specified value.

Checking for Empty Collections: The empty methods check if a collection is empty.



5th Part: 1/0 Streams



Byte streams
Character streams
Streams for network operations

Object streams - serialisation



Input and Output Streams

Input and output streams are used to read data from and write data to
various sources such as files, network connections, or memory buffers

 Byte Streams: Used to handle raw binary data.

* |nputStream (for reading bytes)

o QutputStream (for writing bytes)

 Character Streams: Used to handle character data (text) using encoding like
UTF-8.

 Reader (for reading characters)

* Writer (for writing characters)



Byte Streams

InputStream and OutputStream

* InputStream: Used for reading byte data.
« Commonly used subclasses:
* FilelnputStream: Reads from a file.
* BufferedlnputStream: Buffers the input for efficient reading.
* ByteArraylnputStream: Reads from a byte array.
* OutputStream: Used for writing byte data.
« Commonly used subclasses:
e FileOutputStream: Writes to a file.
* BufferedOutputStream: Buffers the output for efficient writing.

* ByteArrayOutputStream: Writes to a byte array.



Reading from a File

Reading from a file using FilelnputStream

import java.io.FileInputStream,;
import java.1o0.I0Exception;

public class ReadingFileApp A
public static void main(String[] args) {
try (FileInputStream fis = new FileInputStream("README.md")) {
int data;
while ((data = fis.read()) '= -1) { // Reads byte by byte
System.out.print((char) data); // Cast to char for text output
I3

} catch (IOException e) {
e.printStackTrace();
}




Writing to a File

Writing to a file using FileOutputStream

import java.1o.FileQutputStream;
import java.1o0.I0Exception;

public class WriteFileApp {
public static void main(Stringl[] args) A

try (FileOutputStream fos = new FileOutputStream("output.txt")) {
String message = "Hello, World!";
fos.write(message.getBytes()); // Convert String to bytes and write

} catch (IOException e) {
e.printStackTrace();

}




Character Streams

Reader and Writer

 Reader: Used for reading character data.
 Commonly used subclasses:
* FileReader: Reads characters from a file.
 BufferedReader: Buffers the input for efficient reading.
* Writer: Used for writing character data.
 Commonly used subclasses:
* FileWriter: Writes characters to a file.

o BufferedWriter: Buffers the output for efficient writing.



Reading from a File |l

Reading from a file using BufferedReader

import java.1io.BufferedReader;
import java.io.FileReader;
import java.10.I0Exception;

public class ReadingFile2App {
public static void main(String[] args) {
try (BufferedReader br = new BufferedReader(new FileReader("README.md"))) A
String Lline;
while ((line = br.readLine()) '= null) { // Reads line by line
System.out.println(line);
}

} catch (IOException e) {
e.printStackTrace();
I3




Writing to a File |l

Writing to a file using BufferedWriter

import java.1io.BufferedWriter;
import java.lo.FileWriter;
import java.io.IOException;

public class WriteFile2App {
public static void main(Stringl[] args) {

try (BufferedWriter bw = new BufferedWriter(new FileWriter("output.txt"))) {
bw.write("Hello, World!"):
bw.newLine(); // Writes a new line
bw.write("Welcome to Java Streams.");

} catch (IOException e) {
e.printStackTrace();

I3




Streams for Network Operations

You can also use InputStream and OutputStream with network sockets for reading and writing data

over a network.
import java.1o0.InputStream;

import java.net.URI;
import java.net.URL;

public class ReadFromURL A
public static void main(String[] args) {
try {

URI uri = new URI("http://vondrak.vsb.cz/index.html");

URL url = uri.toURL(); // Convert URI to URL

try (InputStream in = url.openStream()) {
int data;
while ((data = in.read()) '= -1) {

System.out.print((char) data);

I3

s
} catch (Exception e) {

e.printStackTrace();
}




Scanning

The Scanner class In Java is used to parse and read user input from various
sources, such as standard input (keyboard), files, or strings.

 Key Methods of Scanner:
* nextLine(): Reads a full line of input as a String.
* next(): Reads the next token (word) as a String.
* nextint(): Reads the next token as an int.
 nextDouble(): Reads the next token as a double.
* hasNext(): Checks if there’s another token available to read.
* hasNextInt(): Checks if the next token is an integer.

» close(): Closes the scanner to release the underlying resource (e.g., standard input).



Reading Input from the Keyboard

Scanner breaks the input into tokens based on delimiters (like spaces or newline
characters), making it convenient to read and process different types of input.

import java.util.Scanner;

public class ScannerApp A
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
// Reading a string input
System.out.print("Enter your name: ");
String name = scanner.nextLine(); // Reads a line of input
// Reading an integer 1input
System.out.print("Enter your age: ");

int age = scanner.nextInt(); // Reads an integer

System.out.println("Name: " + name); 1vo@acBook-Pro-6 Lecture 5 % /usr
System.out.println("Age: " + age); ome/bin/java -XX:+ShowCodeDetailsIn

scanner.close(); // Always close the Scanner when done Eﬁigivséﬂivi;mz:ogcgmmmg/Lecture\
} Enter your age: 65
s Name: Ivo
Age: 65

ivo@acBook-Pro-6 Lecture 5 % §




Object Streams - Serialization

In Java, you can save objects to a file using serialization. Serialization allows an
object to be converted into a byte stream, which can then be saved to a file. Later,
you can read the byte stream from the file and deserialize it to reconstruct the object.

import java.lo.Serializable;

public class Person implements Serializable {
// Ensures version compatibility during deserialization
private static final long serialVersionUID = 1L;
String name;
int age;
// Constructor
public Person(String name, int age) {
this.name = name,
this.age = age;
}
@Override
public String toString() {
return "Person{name='" + name + "', age=" + age + "}'";
}




Save (Serialize) the Object

import java.1io.FileOutputStream;
import java.1io0.0bjectOutputStream;
import java.1o0.I0Exception;

public class SerializeApp 1
public static void main(String[] args) A
Person person = new Person("John", 30); // Create a new Person object
try (FileOutputStream fileOut = new FileOutputStream("person.ser");
ObjectOutputStream out = new ObjectOutputStream(fileOut)) {

out.writeObject(person); // Serialize the object and write to file
System.out.println("Person object saved to person.ser");

} catch (IOException e) {
e.printStackTrace();

}




Read (Deserialize) the Object

import java.io.FileInputStream,;
import java.io0.0bjectInputStream,;
import java.10.I0Exception;

import java.1io.FileNotFoundException;

public class DeserializeApp {
public static void main(String[] args) {
Person person = null;
try (FileInputStream fileIn = new FileInputStream("person.ser");
ObjectInputStream in = new ObjectInputStream(fileIn)) {

person = (Person) in.readObject(); // Deserialize the object from file
System.out.println("Person object deserialized: " + person);

} catch (FileNotFoundException e) {
System.out.println("File not found");

} catch (IOException | ClassNotFoundException e) {
e.printStackTrace();

I3




Final Notes

Object streams can store complex structure of objects connected
by references - it can handle also loops

 The class must implement the Serializable interface, which is a marker
interface (it does not have any methods).

 The serialVersionUID is used to ensure that a serialized object can be
deserialized correctly even if the class has changed slightly (version control).

* Use try-with-resources to automatically close resources such as file streams.
o Attributes marked as a transient are not saved during serialization.

® transient private String personlD;



6th Part: Multithreading



Threads
Synchronization
Producer-Consumer problem

Locks and conditions



Threads

Multithreading in Java allows you to run multiple threads (lightweight
subprocesses) concurrently, enabling better performance and resource utilization

A thread in Java is an independent path of execution
 [hread class is used to create and manage threads.
* [here are two main ways to create a thread in Java:

By Extending the Thread Class

By Implementing the Runnable Interface



Extending the Thread Class

When you extend the Thread class, you need to override its run()
method, which contains the code that the thread will execute.

class MyThread extends Thread {
@Override
public void run() {
// Code to be executed by the thread
for (int 1 = 0; 1 < 5; i++) A
System.out.println(Thread.currentThread().getName() + " - " + 1i);
try {
Thread.sleep(1000); // Pause the thread for 1 second
} catch (InterruptedException e) {
e.printStackTrace();
I3




public class MyThreadApp {
public static void main(String[] args) {
MyThread myThreadl = new MyThread();
MyThread myThread2 = new MyThread()

myThreadl.start();
myThread2.start()

— e 1vo@acBook-Pro-6 Lecture 6 % /usr/bin/env /Library/Java/Java
-XX:+ShowCodeDetalilsInExceptionMessages -cp /Users/ivo/Librar
g/Lecture\ 6/bin MyThreadApp
Thread-0 -
Threaa-1
Thread-1
Threaa-9

Thread-0
Thread-1
Thread-0
Thread-1
Thread-1
Thread-9
1vo@acBook=Pro-6 Lecture 6 5%

=k WWNIN ==




Implementing the Runnable Interface

Another approach is to implement the Runnable interface. This Is
considered more flexible because it allows your class to extend
another class while still supporting multithreading.

class MyRunnable implements Runnable {
@Override
public void run() {
// Code to be executed by the thread
for (int 1 = 0; i < 5; i++) {
System.out.println(Thread.currentThread().getName() + " - " + 1i);
try {
Thread.sleep(1000); // Pause the thread for 1 second
} catch (InterruptedException e) {
e.printStackTrace();
I3




public class MyRunnableApp {
public static void main(String[] args) {
// Creating Runnable objects
MyRunnable runnablel = new MyRunnable();
MyRunnable runnable2 = new MyRunnable();

// Creating threads and passing the Runnable objects
Thread threadl = new Thread(runnablel);
Thread thread2 = new Thread(runnable2);

// Starting the threads ivo@acBook-Pro-6 Lecture 6 % /usr/bin/env /Library/Ja

threadl.start(); temurin-21.jdk/Contents/Home/bin/java -XX:+ShowCodeDeta
thread2.start(); -cp /Users/ivo/Library/CloudStorage/Dropbox/Projects/Ja
1 cture\ 6/bin MyRunnableApp
1 Thread-9 - 0

Thread-1
Thread-0
Thread-1

Thread-1

Thread-9

Thread-1

Thread-9

Thread-1

Thread-0 - 4
1vo@acBook-Pro-6 Lecture 6 %




Some Important Notes
Key Methods in Thread Class

o start(): Begins the execution of the thread.
* run(): Contains the code to be executed when the thread is running.

» sleep(long millis): Puts the current thread to sleep for the specified
milliseconds.

 join(): Allows one thread to wait for the completion of another.
o setPriority(): Sets the priority of a thread.

 getName(): Retrieves the name of the thread.



Synchronization

Since Java is a multithreaded system, care must be taken to prevent
multiple threads from modifying objects simultaneously. Section of code
that must not be executed simultaneously are known as “critical section”.

e Statement synchronized: synchronized (expression) statement
e expression must resolve to an object or array
* statement is the code of critical section.

* The synchronized statement attempts to acquire an exclusive lock for the object or
array and it does not execute the critical section code until it can obtain this lock.

* Method modifier synchronized indicates that entire method is critical section code. For
a synchronized instance method, Java obtains an exclusive lock on the class instance.
For a synchronized class method, Java obtains an exclusive lock on the class.



Multiple Threads Communication

In Java, threads often need to communicate and synchronize their actions
to ensure correct program behavior. This is especially important when

multiple threads operate on shared resources. Java provides several
mechanisms for thread communication

o wait(), notify(), and notifyAll(): These methods allow threads to communicate
by pausing and resuming their execution based on certain conditions.

* | ocks and Conditions (from java.util.concurrent): For more complex thread
synchronization, you can use explicit locks and condition objects.

e join() method: This allows one thread to wait for another to finish execution.



Producer-Consumer Problem

In the producer-consumer problem, one thread (the producer) produces data and
another thread (the consumer) consumes it. The producer must wait if the “buffer” is
full, and the consumer must wait if the “buffer” is empty

class Producer extends Thread {

private Buffer buffer;

public Producer(Buffer buffer) A{
this.buffer = buffer;

}

@Override
public void run() {
for (int i = 0; i < 10; i++) {
try {
buffer.produce(i);
Thread.sleep(100);
// Simulate production time
} catch (InterruptedException e) {
e.printStackTrace();
I3

class Consumer extends Thread {

private Buffer buffer;

public Consumer(Buffer buffer) {
this.buffer = buffer;

}

@Override
public void run() {
for (int 1 = 0; 1 < 10; i++) {
try {
buffer.consume();
Thread.sleep(150);
// Simulate consumption time
} catch (InterruptedException e) {
e.printStackTrace();
I3




class Buffer {
private int data;

private boolean empty = true;
public synchronized void produce(int value) throws InterruptedException {

while ('empty) {
wait(): // Wait if the buffer is full
+

data = value;

empty = false;

System.out.println("Produced: " + value);

notify(); // Notify the consumer that the buffer is no longer empty

}

public synchronized int consume() throws InterruptedException {

while (empty) {
wait(); // Wait if the buffer is empty

}
empty = true;
System.out.println("Consumed: " + data);

notify(); // Notify the producer that the buffer is now empty
return data;




ivo@acBook-Pro-6 Lecture 6 % /usr/bin/«

public class ProducerConsumerApp { temurin-21.jdk/Contents/Home/bin/java -
public static void main(Stringl] args) { -cp /Users/ivo/Library/CloudStorage/Dropl
Buffer buffer = new Buffer(); cture\ 6/bin ProducerConsumerApp
Producer producer = new Producer(buffer); Produced:
Consumer consumer = new Consumer(buffer); Consumed:
Produceq:
oroducer.start(): Consumed:
consumer.start(); Producea:
1 Consumeq:
1 Produceq:
Consumeq:

Produced:
Consumed:
Produced:
Consumed:
Produced:
Consumed:
Produced:
Consumed:
Produced:
Consumed:
Produced:
Consumed:
1vo@acBook-Pro-6 Lecture 6 5%

)
)
|
|
2
2
3
3
4
4
5
5
3
3
7
7
8
8
9
9




Using Locks and Conditions

The Lock and Condition interfaces in provide more advanced
control over thread communication and synchronization.

import java.util.concurrent
import java.util.concurrent
import java.util.concurrent

class BufferWithLock {
private int data;
private boolean empty =
private final Lock lock
private final Condition
private final Condition

. locks.Condition;
. Locks.Lock;
. locks.ReentrantLock;

true;

= new ReentrantLock():

notEmpty = lock.newCondition();
notFull = lock.newCondition();

public int consume() throws InterruptedException {

lock. lock()

try {
while (empty) {

notEmpty.await(); // Wait if the buffer is empty

}

empty = true;

System.out.printin("Consumed: " + data);

notFull.signal();
return data;

} finally {
lock.unlock();

¥

// Notify the producer

public void produce(int value) throws InterruptedException {
lock. lock();

try {

while ('empty) {
notFull.await(): // Wait if the buffer is full
b

data = value;

empty = false;
System.out.println("Produced: " + value);
notEmpty.signal(); // Notify the consumer

} finally {

lock.unlock();




class ProducerWithLock extends Thread {
private BufferWithLock buffer; _
oublic ProducerWithLock(BufferWithLock buffer) { class ConsumerWithLock extends Thread {

this.buffer = buffer: private BufferWithLock buffer;
1 public ConsumerWithLock(BufferWithLock buffer) A
@Override this.buffer = buffer;
public void run() { ; |
for (int 1 = 0; 1 < 5; i++) { @OVG?rlde.
try { public void run() { |
buffer.produce(i); for (int i = 0; 1 < 5; i++) o
Thread.sleep(100); try 1
} catch (InterruptedException e) { buffer.consume();
e.printStackTrace(); Thread.sleep(150); |
1 } catch (InterruptedException e) {
1 e.printStackTrace();
1 I3
1 I3
— I3
I3

public class ProducerConsumerWithLockApp

public static void main(String[] args) {
BufferWithLock buffer = new BufferWithLock();
ProducerWithLock producer = new ProducerWithLock(buffer);
ConsumerWithLock consumer = new ConsumerWithLock(buffer); ¢ ALockis used instead of synchronized blocks.
producer.start();
consumer.start();

I3 signhal between the producer and consumer.

* Conditions (notEmpty and notFull) are used to




Using join() for Thread Communication

The join() method allows one thread to wait for the completion of another thread

class Task extends Thread {
private String taskName;
public Task(String name) {
this.taskName = name;
I3

@Override
public void run() {
for (int i = 0; i < 3; i++) {
System.out.println(taskName + " - " + 1i);
try 1
Thread.sleep(1000); // Simulate work
} catch (InterruptedException e) {
e.printStackTrace();
I3




public class JoinApp {
public static void main(Stringl[] args) throws InterruptedException {
Task taskl = new Task("Task 1");
Task task2 = new Task("Task 2");

taskl.start();
taskl.join(); // Main thread waits until taskl completes

task2.start();
task2.join(); // Main thread waits until task2 completes

System.out.println("Both tasks completed.");

1 1vo@acBook-Pro-6 Lecture 6 % /usr/bin/env /Librar

temurin-21.jdk/Contents/Home/bin/java -XX:+ShowCodel

-cp /Users/ivo/Library/CloudStorage/Dropbox/Projects

cture\ 6/bin JoinExample

Task 1 - 0

Task 1

Task 1
2
2

Task

Task

Task 2

Both tasks completed.
1vo@acBook=Pro-6 Lecture 6 %




/7th Part: GUl Framework



¢ Swing
e JavaFX
 Event handling in GUI



Graphical User Interface

In Java, Graphical User Interface (GUI) development is mainly handled using two
primary frameworks:

 Swing:
* A lightweight GUI toolkit that is part of the Java Standard Library.
 JavaFX:

* A more modern and feature-rich toolkit that is designed to replace Swing.
JavaF X provides advanced capabilities for building rich desktop
applications.



Swing
Swing is a part of the Java Foundation Classes (JFC) and is widely used

for creating desktop applications. It builds upon the Abstract Window
Toolkit (AWT) but provides more powerful and flexible components.

« Key Components:
 JFrame: A window with a title bar and borders.
» JPanel: A container for organizing components.
e JButton: A button component for user interactions.
» JLabel: A component for displaying text.

o JlextField: A text input field.



import javax.swilng.x;

public class SimpleSwingApp 1

public static void main(String[] args) {
// Create a new JFrame (the window)
JFrame frame = new JFrame("Simple Swing App");
frame.setSize(400, 300);
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
// Create a button
JButton button = new JButton("Click Me!");
// Add a button click event listener
button.addActionListener(e —> JOptionPane.showMessageDialog(frame, "Button Clicked!"));
// Add button to the frame
frame.getContentPane().add(button);
// Make the window visible
frame.setVisible(true);

Message

l *&‘I Button Clicked!




 Explanation:  Layout Management:

o JFrame: Represents the main e Swing provides several layout
window of the application. managers such as FlowlLayout,
BorderLayout, and GridLayout to
« JButton: A button component is arrange components within
added to the frame, and an event containers.

listener is used to respond to
button clicks.

e ActionListener: Handles the
button’s click event.



JavaFX

JavaFX is a newer framework introduced to replace Swing and provides a more
modern approach to building rich Uls, with support for advanced features such
as media integration, CSS styling, and hardware-accelerated graphics.

 Key Features of JavaFX:
e Declarative Ul using FXML.
e Built-in support for animations and graphics.
 Modern Ul components.

o CSS for styling the UL.

* Support for media playback and 3D graphics.



import javafx.application.Application;
import javafx.scene.Scene;

import javafx.scene.control.Button;
import javafx.scene. layout.StackPane;
import javafx.stage.Stage;

public class SimpleJavaFXApp extends Application {

@Override

public void start(Stage primaryStage) {
// Create a button
Button button = new Button("Click Me!");
// Set button click action
button.setOnAction(e —> System.out.println("Button Clicked!"));
// Create a layout
StackPane root = new StackPane();
root.getChildren().add(button);
// Create a scene and add the layout to the stage
Scene scene = new Scene(root, 400, 300);
primaryStage.setTitle("Simple JavaFX App");
primaryStage.setScene(scene);
// Show the stage
primaryStage.show();

s

public static void main(String[] args) {
launch(args);

s




 Explanation:

 Application: The main class that extends Application to build JavaFX
applications.

o Stage: Represents the main window (similar to JFrame in Swing)
 Scene: Holds all Ul elements in a scene graph.

e Button: A button component with an event handler for clicks.



Using FXML Iin JavaFX

FXML is an XML-based language used to describe JavaFX GUIs. It
allows for a clean separation between the Ul layout and the logic.

 FXML file: Contains the structure and layout of the UI.

e Controller: The Java class that handles user interactions and events.



<?xml version="1.0" encoding="UTF-8"7>

<?import javafx.scene.control.Button?>
<?import javafx.scene. layout.AnchorPane?>

<AnchorPane xmlns="http://javafx.com/javaftx"
xmlns: fx="http://javaftx.com/fxml"
fx:controller="MainController">
<Button text="Click Me" onAction="#handleButtonClick" layoutX="150" layoutY="100"/>
</AnchorPane>

import javafx.fxml.FXML;
import javafx.scene.control.Alert;

public class MainController <

QF XML

public void handleButtonClick() {
Alert alert = new Alert(Alert.AlertType.INFORMATION);
alert.setContentText("Button Clicked!");
alert.showAndWait();




import
import
import
import
import

public

javafx.application.Application;
javafx.fxml.FXMLLoader;
javafx.scene.Parent;
javafx.scene.Scene;
javafx.stage.Stage;

class MainApp extends Application {

@Override
public void start(Stage primaryStage) throws Exception {

}

Parent root = FXMLLoader.load(getClass().getResource("/Main.fxml"));
primaryStage.setTitle("FXML Example");

primaryStage.setScene(new Scene(root, 400, 300));
primaryStage.show();

public static void main(Stringl[] args) A

}

launch(args) ;




Comparison of Swing and JavaFX

Feature Swing JavaFX

Introduced 1997 2008

Declarative Ul No Yes, via FXML

Styling Limited (basic Look and Feel) CSS-based styling

Graphics Basic 2D graphics Rich 2D and 3D graphics
Animation Difficult to implement manually Built-in support for animations
Media No native support Built-in media playback
Performance Slower (especially with heavy Uls) Faster (hardware-accelerated)

Future Support Largely deprecated Actively maintained and updated




Event Handling in GUI

Both Swing and JavaFX have robust event-handling mechanisms

* |n Swing, event listeners such as ActionListener, MouselListener, etc., are
attached to Ul components to handle user actions.

* |n JavaFX, event handlers (such as setOnAction(), setOnKeyPressed()) or
methods in the controller class are used to define how the application reacts

to user Interactions.



Counter Controlled by GUI in Swing

Model class (Counter) holds the logic for the counter, and the
GUI (CounterApp) observes and updates its display based on the
current state of the Counter.

 The Counter class will have:
* An integer field to store the count value.
 Methods to increment, decrement, and get the current value.
e A listener mechanism to notify the GUI when the counter value changes.

 Modify the GUI (CounterApp):

 The CounterApp will observe the Counter by implementing the CounterListener
interface and updating the GUI when the counter value changes.



public class Counter {
int value;
private CounterListener listener; // Listener for observing changes
public void setCounterListener(CounterListener listener) A
this. listener = listener;
}

// Increment the counter value
public void increment() {
value++;
notifyListener();

public interface CounterListener {
void onCounterChanged(int newValue);
}

}

// Decrement the counter value
public void decrement() {
value——;
notifyListener();
+
// Get the current counter value
public int getValue() {
return value;
I3

// Notify the listener when the value changes
private void notifyListener() {
if (listener != null) {
listener.onCounterChanged(value);
}




public class CounterApp implements CounterListener A

. . . JFrame frame; . . .
import javaxX.swlng.x; JTextField stateField: // Implementation of the CounterListener interface

import java.awt.x; @Override

import java.awt.event.ActionEvent; public void onCounterChanged(int newValue) {

import java.awt.event.ActionlListener; stateField.setText(String.valueOf(counter.getValue()));
// Update the GUI when the counter changes

JButton i1ncrementButton;
JButton decrementButton:
Counter counter;
T pUbTic CounterApp() {
counter = new Counter(); ;
counter.setCounterListener(this);
frame = new JFrame("Counter App");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.setSize (300, 200);
frame.setLayout(new FlowLayout());
stateField = new JTextField(10);
stateField.setEditable(false);
stateField.setText(String.valueOf(counter.getValue()));
incrementButton = new JButton("Increment'");
incrementButton.addActionListener(new ActionListener() {
@Override
public void actionPerformed(ActionEvent e) {
counter.increment(); // Call the increment method on the Counter

¥
O O Counter App } ) ’
decrementButton = new JButton("Decrement"):
4 | Increment | decrementButton.addActionListener(new ActionListener() {
@Override
Decrement

public void actionPerformed(ActionEvent e) A
counter.decrement(); // Call the decrement method on the Counter
¥

) ; ' j j j j
: | _ public static void main(Stringl[] args) {
frame.add(stateField); // Run the app on the Event Dispatch Thread (EDT)

frame.add(incrementButton); SwingUtilities.invokelLater(() —> new CounterA ;
frame.add(decrementButton); ! J () pp());

frame.setVisible(true); 1




Summary

Swing or JavaFX

 Swing is older but still widely used for creating desktop applications. It’s
simple but less modern compared to JavaFX.

e JavaFXis more powerful and versatile, providing support for modern Ul
features like CSS styling, animations, and media integration. It is the
recommended framework for new Java GUI development.

* You can use JavaFX with FXML for cleaner, declarative Ul code, separating
logic from presentation.



e How It Works:

 The Counter class contains all the logic to manage the counter state
(increment, decrement, and notify listeners of changes).

 The CounterApp class handles the user interface. It listens for changes in
the counter’s value by implementing the CounterListener interface.

 When a button is clicked (increment or decrement), the Counter is updated,
and the CounterListener notifies the GUI to update the display.

 Benefits of This Design:

o Separation of Concerns: The business logic (counter) is separated from the
presentation logic (GUI), making the application easier to maintain and test.

 Observer Pattern: The Counter notifies the GUI when the value changes,
adhering to the observer design pattern.



8th Part: Java APl for DBMS



» Java database management system

* Performing SQL Queries



Database Management System (DBMS)

To use a DBMS in Java, you typically rely on JDBC (Java Database
Connectivity) API

e Each DBMS has its own JDBC driver that enables communication between
Java and the database.

« MySQL: mysqgl-connector-java
 PostgreSQL: postgresql
o SQLite: sqglite-jdbc
* You can add these drivers to your project manually:

 Download the JDBC .jar file and add it to your project’s classpath.



Connecting to a MySQL Database

import
import
import

public

java.sql.Connection;
java.sql.DriverManager;
java.sql.SQLException;

class DatabaseConnectionApp {
public static void main(String[] args) {
String jdbcURL = "jdbc:mysql://localhost:3306/mydatabase";

String username
String password

"MyUserName"';
,MyPassword";

try {

// Establish connection to the database

Connection connection = DriverManager.getConnection(jdbcURL, username, password);
System.out.println("Connected to the database successfully!");

// Close the connection after use

connection.close();

} catch (SQLException e) {

}

e.printStackTrace();




Perform SQL Queries

Once you have a connection, you can execute SQL statements
such as SELECT, INSERT, UPDATE, and DELETE.

o Statement: Used for simple queries without parameters.

 PreparedStatement: Used for parameterized queries (helps prevent SQL
injection).

 ResultSet: Represents the result set of a query.



import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.sql.Statement;

public class QueryApp A
public static void main(String[] args) {
String jdbcURL = "jdbc:mysqgl://localhost:3306/mydatabase";
String username = "MyUserName'",;
String password "MyPassword";
try {
Connection connection = DriverManager.getConnection(jdbcURL, username, password);
Statement statement = connection.createStatement();
String sqgl = "SELECT x FROM users';
ResultSet resultSet = statement.executeQuery(sql);
while (resultSet.next()) { // Process the result set
int id = resultSet.getInt("id");
String name = resultSet.getString('"name");
String email = resultSet.getString("email");
System.out.printin("ID: " + id + ', Name: " + name + ", Email:

+ email);
+
resultSet.close();
statement.close();
connection.close():
} catch (SQLException e) {
e.printStackTrace();
s




Executing an INSERT Query

import java.sql.Connection;

import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.SQLException;

public class InsertApp {
public static void main(String[] args) {
String jdbcURL = "jdbc:mysqgl://localhost:3306/mydatabase";
String username = "root'",;
String password "password",;

try {
Connection connection = DriverManager.getConnection(jdbcURL, username, password);
String sql = "INSERT INTO users (name, email) VALUES (?, ?)";
PreparedStatement statement = connection.prepareStatement(sql);
statement.setString(1, "John Doe"); // First parameter (?)
statement.setString(2, "john@example.com"); // Second parameter (?)
int rowsInserted = statement.executeUpdate();
if (rowsInserted > 0) {
System.out.println("A new user was inserted successfully!");
}

statement.close();
connection.close();

} catch (SQLException e) {
e.printStackTrace();

+




« Summary of Steps:
 Add the JDBC driver to your project (via Maven/Gradle or manually).
e Establish a connection to the database using DriverManager.
 Execute SQL queries using Statement or PreparedStatement.
* Use ResultSet to handle query results.

 Handle exceptions and close resources.



Oth Part: Networking



» Socket-based communication
« HTTP Requests and Responses

e Remote method invocation



Networking

Java provides a powerful set of APIs for networking, enabling

developers to create networked applications that communicate over
TCP/IP, HTTP, or other protocols.

 Summary of Java Networking Classes:
» Socket / ServerSocket: TCP communication.
 DatagramSocket: UDP communication.
 URL / HttpURLConnection: Web/HTTP access.
* |netAddress: Handling IP addresses.

 SocketChannel / ServerSocketChannel: Non-blocking I/0 for networking.



Socket-based Communication Between Programs

A socket Is one end of a two-way communication link between
two programs running over the network.

import java.10.x%;
import java.net.Socket;

public class SimpleClientApp {
public static void main(String[] args) {
try (Socket socket = new Socket("localhost", 8080);
PrintWriter out = new PrintWriter(socket.getOutputStream(), true);
BufferedReader in = new BufferedReader(new InputStreamReader(socket.getInputStream()))) {

out.println("Hello Server!");
String response = in.readlLine();
System.out.println("Server says: " + response);
} catch (IOException e) {
e.printStackTrace();
I3




import java.10.x;
import java.net.ServerSocket;
import java.net.Socket;

public class SimpleServerApp {
public static void main(String[] args) {
try (ServerSocket serverSocket = new ServerSocket(8080)) {
System.out.println("Server is listening on port 8080...");
Socket clientSocket = serverSocket.accept(); // Accept a client connection

PrintWriter out = new PrintWriter(clientSocket.getOutputStream(), true);
BufferedReader in = new BufferedReader(new InputStreamReader(clientSocket.getInputStream()));

String message = in.readlLine();
System.out.println("Client says: " + message);

out.println("Hello, Client!");
} catch (IOException e) {
e.printStackTrace();
s




Control over HTTP Requests and Responses

import java.10.x%;

import java.net.HttpURLConnection;
import java.net.URI;

import java.net.URL;

import java.net.URISyntaxException;

public class HTTPClientApp 1
public static void main(String[] args) {
try {
URI uri new URI("http://vondrak.vsb.cz/index.html");
URL url = uri.toURL();
HttpURLConnection connection = (HttpURLConnection) url.openConnection();
connection.setRequestMethod ("GET");
int responseCode = connection.getResponseCode();
System.out.println("Response Code: " + responseCode);
BufferedReader in = new BufferedReader(new InputStreamReader(connection.getInputStream()));
String 1inputlLine;
while ((inputLine = in.readLine()) !'= null) {
System.out.println(inputLine);
I3

in.close();

} catch (IOException | URISyntaxException e) {
e.printStackTrace();

I3




Remote Method Invocation

Java RMI (Remote Method Invocation) allows objects residing on different JVMs
(even on different machines) to communicate with each other as if they were local.

e How Java RMI works:

Remote Interface: Defines the methods that can be called remotely.

Remote Object: Implements the remote interface and extends
UnicastRemoteQObiject.

RMI Reqgistry: Registers the remote objects so clients can look them up.

Client: Looks up the remote object in the registry and invokes methods on
it.



Define the Remote Interface

This Iinterface defines the methods that can be called remotely. It must
extend java.rmi.Remote and all methods must throw RemoteException.

import java.rmi.Remote;
import java.rmi.RemoteException;

public interface Counter extends Remote {
int increment() throws RemoteException;
int getCount() throws RemoteException;




Implement the Remote Object

The class that implements the remote interface must extend
UnicastRemoteObiect and implement the methods.

import java.rmi.server.UnicastRemoteObject;
import java.rmi.RemoteException;

public class CounterImpl extends UnicastRemoteObject implements Counter {
private int count;
protected CounterImpl() throws RemoteException {

super();
count = 0;
I3
@Override

public int increment() throws RemoteException {
return ++count;
}

@Override

public int getCount() throws RemoteException {
return count,

}




Create the Server (RMI Registry Binding)

On the server side, you need to create the RMI registry and bind
the remote object to It.

import java.rmi.Naming;
import java.rmi.registry.LocateRegistry;

public class RMIServer A
public static void main(String[] args) {

try {
// Start the RMI registry on port 1099
LocateRegistry.createRegistry(1099);
// Create the remote object
CounterImpl counter = new CounterImpl();
// Bind the remote object to a name
Naming.rebind("rmi://localhost/CounterService", counter);
System.out.println("CounterService is running...");

} catch (Exception e) {
e.printStackTrace();

}




Create the Client

On the client side, you look up the remote object and invoke

methOdS on It. ivo@macbook-pro Lecture 9 % /usr/bin/env /Library/J:
s/Home/bin/java —agentlib: jdwp=transport=dt_socket, s¢
+ShowCodeDetailsInExceptionMessages —-cp /Users/ivo/L

import java.rmi.Naming; \ Programming/Lecture\ 9/bin RMIServer

public class RMIClient {

CounterService 1is running...

public static void main(String[] args) {
try {

} catch (Exception e) {

}

// Look up the remote object from the RMI registry
Counter counter = (Counter) Naming. lookup("rmi://localhost/CounterService");

// Call methods on the remote object

System.out.println("Initial count: " + counter.getCount());
counter.increment();
System.out.println("After increment: " + counter.getCount());

. _ ivo@macbook-pro Lecture 9 % /usr/bin/env /Library/Java/Java
e.printStackTrace(); s/Home/bin/java —-XX:+ShowCodeDetailsInExceptionMessages —cp

X/Projects/Java/Java\ Programming/Lecture\ 9/bin RMIClient

Initial count: ©
After increment: 1
ivo@macbook-pro Lecture 9 % [}




RMI Summary

« Common Uses of RMI:
» Distributed systems where multiple JVMs need to communicate.
» Client-server applications (e.g., a chat system or distributed task execution).
 Remote object management and interaction in enterprise systems.
* Limitations of RMI.
» Java RMI works only with Java applications.

* |t’s a relatively old technology and may not be ideal for modern web-based
distributed applications, where alternatives like gRPC or RESTful APIs are
more popular.



10th Part: Final Notes



Java Reflection

Java reflection tools enable introspection about the classes and
objects In the current JVM

* A Field object represents a reflected field (a class variable or an instance
variable).

* A Method object represents a reflected method (an abstract method, an
instance method, or a class method).

* A Constructor object represents a reflected constructor



public class Unknown {
public void display() {
System.out.println("The display method invoked!");
}

public void method1() {}
public void method2() <} import java.lang.reflect.Method;

. public class ReflectionApp {
public static void main(String[] arg) {

Object obj = new Unknown();

Class cl = obj.getClass();

Method[] methods = cl.getMethods();

for (int i=0; i < methods.length; i++) {

if (methods[i].getName().equals("display"))

try { methods[i].invoke(obj,null); }
catch (Exception e) {}

}

ivo@macbook-pro Lecture 10 % cd /Users/ivo/Library/CloudStorage/Dropbox/Projects/Java/Java\ Proc
/env /Library/Java/JavaVirtualMachines/temurin-21.jdk/Contents/Home/bin/java —-XX:+ShowCodeDetails

/ivo/Library/CloudStorage/Dropbox/Projects/Java/Java\ Programming/Lecture\ 10/bin ReflectionApp

The display method invoked!
ivo@macbook-pro Lecture 10 %




Annotations

Annotations have a number of uses, among them:

* Information for the compiler: Annotations can be used by the compiler to
detect errors or suppress warnings

 Compiler-time and deployment-time processing: Software tools can process
annotation information to generate code, XML files, and so forth

 Runtime processing: Some annotations are available to be examined at
runtime (reflection)



Annotations Used by the Compiler

There are three annotation types that are predefined by the
language specification itself

« @Deprecated: indicates that the marked element is deprecated and should no
longer be used

« @Override: informs the compiler that the element is meant to override an
element declared in a superclass

o« @SuppressWarnings: tells the compiler to suppress specific warnings that it
would otherwise generate



